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Towards Data-Driven and 
Physically-Consistent 

Models of Atmospheric Convection

ML for Climate Modeling

How to best combine ML & 
physical knowledge?



Atmospheric Convection = Atmospheric motion 
driven by air density differences



Motivation 1: Largest uncertainties in climate projections from clouds 

Source: Zelinka et al. (2020), Meehl et al. (In Review), Gentine, Eyring & Beucler (2020)



Motivation 1: Largest uncertainties in climate projections from clouds 

Motivation 2: Global cloud-resolving models can resolve 
convection & clouds at ~1km, but only for short period (1 year) 

Source: Stevens et al. (2019), Sato et al. (2009), SAM: Khairoutdinov and Randall (2003), Lee and Khairoutdinov (2015)



Motivation 1: Largest uncertainties in climate projections from clouds 

Motivation 2: Global cloud-resolving models can resolve 
convection & clouds at ~1km, but only for short period (1 year) 

Motivation 3: ML can accurately mimic ~1km convective processes

See: Rasp et al. (2018), Brenowitz et al. (2018,2019), Gentine et al. (2018), Yuval et al. (2020), Krasnopolsky et al. (2013)



ML of Subgrid-Scale Thermodynamics

Image source: e3sm.org, Model source: Khairoutdinov et al. (2004)

Setup : Super-Parameterized climate model with prescribed surface temp.
Year 1 for training (42M samples), Year 2 for validation/test

Neural Network: 
20 times faster
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See: Rasp et al. (2018), Brenowitz et al. (2018,2019), Gentine et al. (2018), Yuval et al. (2020), Krasnopolsky et al. (2013)

Source: Mooers, Pritchard, Beucler et al. (2021)
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Can we eliminate physics entirely?

Image Source: Weyn et al. (2020), See also: Rasp et al. (2020)



Can we eliminate physics entirely?

Maybe for meteorology
Not for climate 

Problem 3: ML algorithms fail to generalize

Problem 1: ML algorithms violate conservation laws

Problem 2: ML parametrization hard to interpret/trust



Problem 1: Neural Nets typically violate conservation laws

Global 
Warming



Problem 2: ML parametrizations are hard to interpret/trust

See: Brenowitz, Beucler et al. (2020)



Problem 3: ML algorithms fail to generalize

See: Beucler et al. (2019)

Daily-mean Tropical prediction in reference climate 



See: Beucler et al. (2019)

Daily-mean Tropical prediction in reference climate 

Problem 3: ML algorithms fail to generalize

Convective moistening (W m-2)



See: Beucler et al. (2019)

Daily-mean Tropical prediction in (+4K) warming experiment 

Problem 3: ML algorithms fail to generalize

Convective moistening (W m-2)



Problem 3: ML algorithms fail to generalize

How can we design 
interpretable, physically-consistent & data-driven

models of convection?

Problem 1: ML algorithms violate conservation laws

Problem 2: ML parametrization hard to interpret/trust

How to best combine ML & physical knowledge?



Physics-Guided ML: Add physical structure to
restrict ML output to physically-plausible solutions

Physical 
Structure

Reviews: Willard et al. (2020), Reichstein et al. (2019), Karpatne et al. (2017), Beucler et al. (2021)



Physics-Guided ML: Add physical structure to
restrict ML output to physically-plausible solutions

See: Schneider et al. (2017), Reichstein et al. (2019), Camps-Vall et al. (2018), Image Source: CliMA, Caltech 

Physical 
Structure

Learn Parameters 
of Physical Model



Physics-Guided ML: Add physical structure to
restrict ML output to physically-plausible solutions

Physical 
Structure

Learn Parameters 
of Physical Model

Bias Correction of 
Physical Model

See: Rasp and Lerch (2018), Grönquist et al. (2021), Bonavita and Laloyaux (2020), Image Source: Rasp et al. (2020) 



Physics-Guided ML: Add physical structure to
restrict ML output to physically-plausible solutions

Physical 
Structure

Learn Parameters 
of Physical Model

Bias Correction of 
Physical Model

Physics-Constrained 
Loss or Architecture

See: Karpatne et al. (2017), Wu et al. (2020), Raissi et al. (2019), Image Source: R. Gauthier-Butterfield, UCI (2021) 



Physical 
Structure

Learn Parameters 
of Physical Model

Bias Correction of 
Physical Model

Physics-Constrained 
Loss or Architecture

See: Karpatne et al. (2017), Wu et al. (2020), Raissi et al. (2019), Image Source: R. Gauthier-Butterfield, UCI (2021) 

Problem 1: Neural Nets typically violate conservation laws



Physics-Constrained Loss Function
Idea: Introduce a penalty for violating conservation (~ Lagrange multiplier):

See: Beucler et al. (2021)



Physics-Constrained Architecture
Idea: Introduce a penalty for violating conservation (~ Lagrange multiplier):

Constraint layers to enforce conservation laws to within machine precision!

See: Beucler et al. (2021)



We can enforce conservation laws in NNs
Conservation of mass, energy, and radiation

Problem 1: Neural Nets typically violate conservation laws

See: Beucler et al. (2021)



Problem 2: For climate modeling, 
we need trustworthy/interpretable parametrizations

Source: Interpretable Machine Learning, C. Molnar (2019)



Problem 2: ML parametrizations are hard to interpret/trust

Idea: Tailor 2 NN interpretability methods to parameterization convection

See: McGovern et al. (2019), Toms et al. (2019), Montavon et al. (2018), Molnar et al. (2018)



Partial Dependence Plots confirm that at 
fixed l.t. stability, mid-tropospheric moisture fuels convection

See: Brenowitz, Beucler et al. (2020)



Partial Dependence Plots confirm that at 
fixed l.t. stability, mid-tropospheric moisture fuels convection

See: Brenowitz, Beucler et al. (2020)



Partial Dependence Plots confirm that at 
fixed l.t. stability, mid-tropospheric moisture fuels convection

See: Brenowitz, Beucler et al. (2020)



Jacobian calculated via automatic differentiation
helps interpret and stabilize parameterization

See: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018), Brenowitz, Beucler et al. (2020)

Spurious unstable 
propagating modes

Couple to 
linearized gravity 
wave dynamics 



Problem 2: ML parametrizations are hard to interpret/trust

See: Brenowitz, Beucler et al. (2020)

We can tailor interpretability methods
Partial Dependence Plots + Gradients

Also applies to Attribution Maps



See: Beucler et al. (2019)

Daily-mean Tropical prediction in (+4K) warming experiment 

Problem 3: ML algorithms fail to generalize

Convective moistening (W m-2)



Image source: IT Biz Advisor

Idea: Break the model even more!



Generalization Experiment: Uniform +8K warming

Images: Rashevskyi Viacheslav, Sebastien Decoret

+8K

Training and Validation on
cold aquaplanet simulation

Test on warm aquaplanet simulation



Generalization Experiment: Uniform +8K warming



Generalization Experiment: Uniform +8K warming



Generalization Experiment: Uniform +8K warming



Trained on cold climate

Tested out-of-sample

Generalization Experiment: Uniform +8K warming



Problem 3: NNs fail to generalize to unseen climates
Daily-mean Tropical prediction in cold climate 



Problem 3: NNs fail to generalize to unseen climates
Daily-mean Tropical prediction in cold climate 



Daily-mean Tropical prediction in warm climate 



Daily-mean Tropical prediction in warm climate 



Physically rescale the data 
to convert extrapolation into interpolation

Brute Force: Not Climate-Invariant



Goal: Climate-Invariant

Physically rescale the data 
to convert extrapolation into interpolation

Goal: Uncover climate-invariant mapping from climate to convection



How to choose the physical rescaling?

Physically rescale the data 
to convert extrapolation into interpolation

Goal: Uncover climate-invariant mapping from climate to convection



Extrapolation Interpolation

Log. Histogram



Generalization improves dramatically!



PDF



Observations suggest a strong relationship between 
buoyancy & moist convection across scales

See: Schiro et al. (2018), Ahmed & Neelin (2018), Ahmed et al. (2020)
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Climate-Invariant NNs generalization error close to
NN trained in warm climate



Problem 3: Physically Rescaling Inputs allows 
NNs to generalize from cold to warm climate

+8K

+8K

?

See: Beucler et al. (Under review)



Physically-Rescaled Neural Networks Generalize Better
Across Climates in Earth-like configurations

Without Rescaling With Physical Rescaling

Near-Surface Subgrid Heating



Physically-Rescaled Neural Networks Generalize Better
Across Climates in Earth-like configurations

Without Rescaling With Physical Rescaling

Mid-Tropospheric Subgrid Heating



Outlook 1: Extracting Physics from Data 

See: Barnes & Ebert-Uphoff (2020)

Incorporate physical 
knowledge into ML

Use ML to extract 
physical knowledge from data



Climate-invariant NNs more local than Brute-Force NNs
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Extracting convective regimes from cloud-resolving data

Source: Mooers, Tuyls, Mandt, Pritchard, & Beucler (2020)



Forecast Lead (months)

Adapted from: Ham et al. (2019), See: Rasp & Thuerey (2021)

Outlook 2: Transferring knowledge across 
climates/geographies/models/observations



Problem: Observations of convection are sparse

Images: NASA, NOAA
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Problem: Observations of convection are sparse

Images: NASA, NOAA
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Problem: Observations of convection are sparse

Images: EUREC4A, NOAA
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Climate-Invariant NNs learn transferable mappings 

Clim. Inv. NN trained in 



Climate-Invariant NNs learn transferable mappings 

Clim. Inv. NN trained in 

Standard NN



Outlook 2: Physics-informed ML may assist the 
data assimilation of sparse observations

Images: EUREC4A, NOAA
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Atmospheric Physics can Help Machine Learning

1) Enforce physical constraints approx. (loss) or exactly (architecture)

2) Tailor ML interpretability methods for emulation of physical processes

3) Help NNs generalize by physically rescaling inputs & outputs

4) Rescaled ML learns more general mappings/facilitates transfer learning

Images: NASA, NOAA



Thank you

www.unil.ch/dawn
tom.beucler@unil.ch



Bonus Slides



Summary



Neural Network = Non-linear regression tool

High-dimensional 
Inputs x

High-dimensional 
Outputs y

Image source: Kathuria (Paperspace)



Linear Response 
Function

Stability Diagram 
(Offline)

Stable NN Unstable NN



+8K

Training/Validation on
cold aquaplanet simulation

Test on 
warm aquaplanet simulation

Climate-Invariant nets: Rescale inputs/outputs so that (extrapolation)→(interpolation) 

→



Climate-Invariant neural networks:

• Learn more general mappings

• Facilitate transfer learning



Soft Constraints (Loss) vs Hard Constraints (Architecture)

Loss: Introduce a penalty for violating conservation (~ Lagrange multiplier):

Architecture: Constraints layers to enforce conservation laws to machine precision



Loss: Trade-off between physical constraints and performance



Mean-Squared Error (skill)
for unconstrained network

Loss: Trade-off between physical constraints and performance



Mean-Squared Error (skill)
for multiple linear regression

Loss: Trade-off between physical constraints and performance



Squared-Residual (energy/mass leak)
from conservation laws

>100

Loss: Trade-off between physical constraints and performance



Follows conservation laws 
more and more closely

Loss: Trade-off between physical constraints and performance



Performs worse and worse

Loss: Trade-off between physical constraints and performance



Architecture: Constraints enforced & competitive performance
Loss: Trade-off between physical constraints and performance

See: Beucler et al. (2019)



Problem 2: Even when physically constrained, 
NNs fail to generalize



Algorithms: Custom Data Generators/Layers

• Only one training/validation/test data despite multiple rescalings

• Test different rescalings quickly using multi-linear/logistic regressions

• Keep the rescalings that yield the best generalization



Start with clear link to climate 
impact/remote sensing

Link = Transfer Learning



Why Integrate Physics into ML/Stat Algorithms?

• Physical consistency 
(definitions, conservation laws…)

• Ability to generalize outside of the training set

• Interpretability

• Stability

• Data limitations

Reviews: Willard et al. (2020), Reichstein et al. (2019), Karpatne et al. (2017), Beucler et al. (2021)
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