Atmospheric Physics-Guided Machine Learning

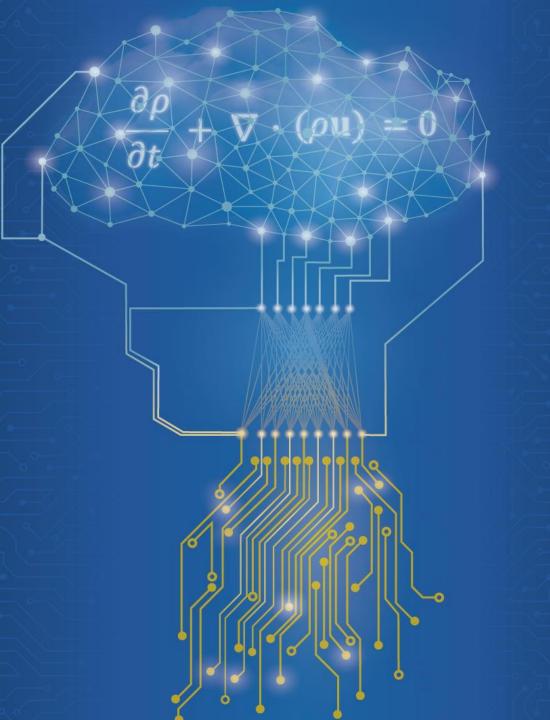
$\partial^3 AWN$

∂ata-∂riven Atmospheric & Water ∂yNamics Unil

UNIL | Université de Lausanne

Presenter: Tom Beucler (UNIL)

M Pritchard (UCI), S Rasp (Clim. AI), P Gentine (Columbia), I Ebert (CSU), N Brenowitz (UW), J Yuval (MIT)...



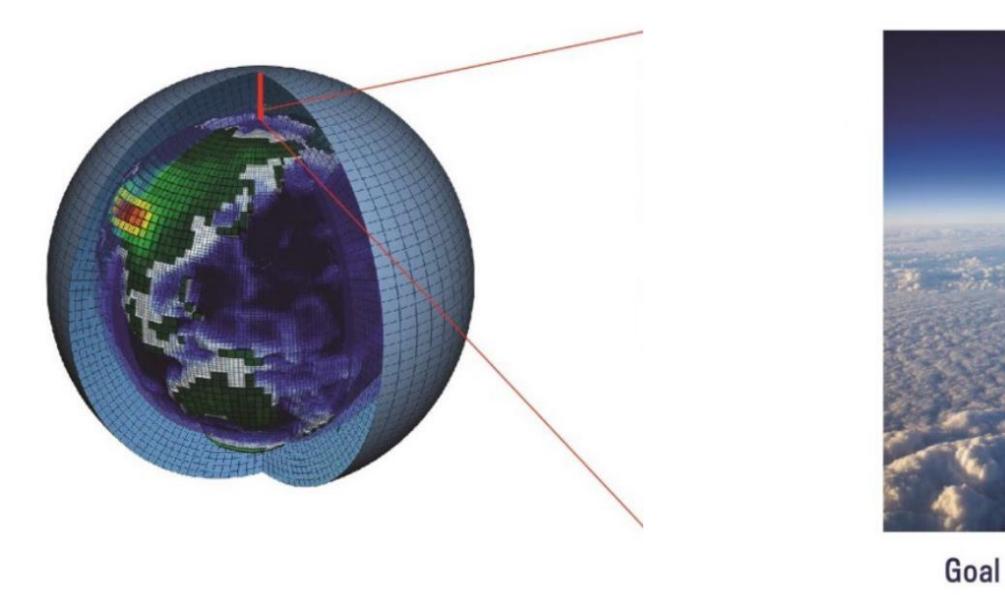
How to best combine ML & physical knowledge?

ML for Climate Modeling

Towards Data-Driven and Physically-Consistent Models of **Atmospheric Convection**

Atmospheric Convection = Atmospheric motion driven by air density differences

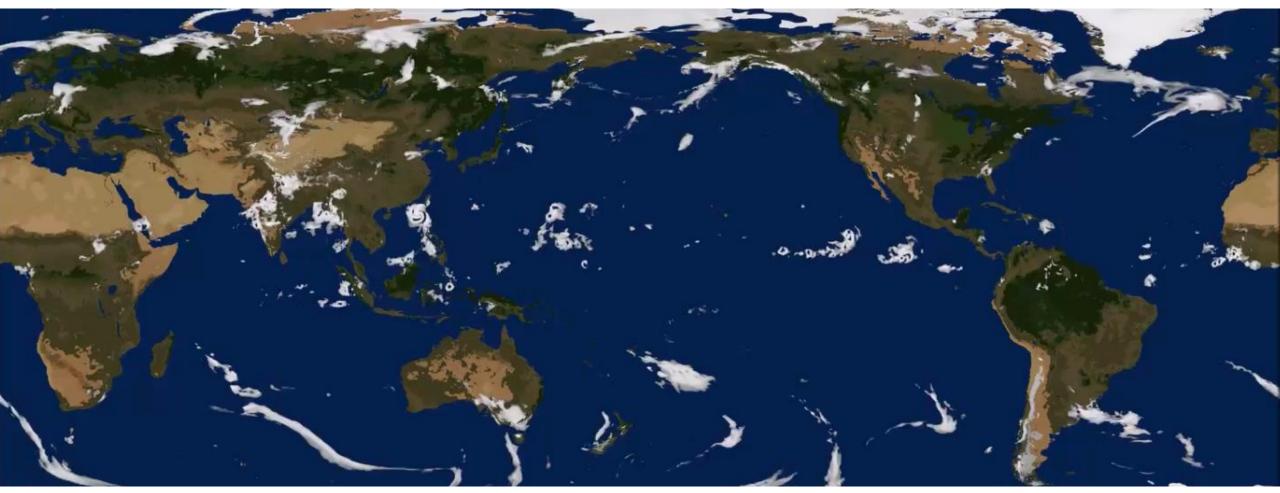
Motivation 1: Largest uncertainties in climate projections from clouds



<u>Source:</u> Zelinka et al. (2020), Meehl et al. (In Review), Gentine, Eyring & Beucler (2020)

Motivation 1: Largest uncertainties in climate projections from clouds

<u>Motivation 2</u>: Global cloud-resolving models can resolve convection & clouds at \sim 1km, but only for short period (1 year)



Source: Stevens et al. (2019), Sato et al. (2009), SAM: Khairoutdinov and Randall (2003), Lee and Khairoutdinov (2015)

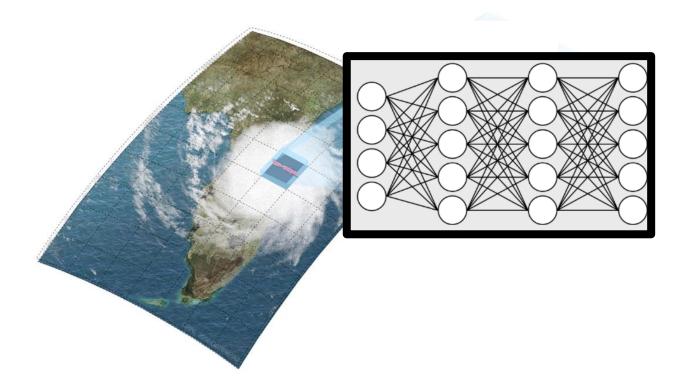
Motivation 1: Largest uncertainties in climate projections from clouds

<u>Motivation 2</u>: Global cloud-resolving models can resolve convection & clouds at \sim 1km, but only for short period (1 year)

<u>Motivation 3</u>: ML can accurately mimic \sim 1km convective processes

<u>See</u>: Rasp et al. (2018), Brenowitz et al. (2018,2019), Gentine et al. (2018), Yuval et al. (2020), Krasnopolsky et al. (2013)

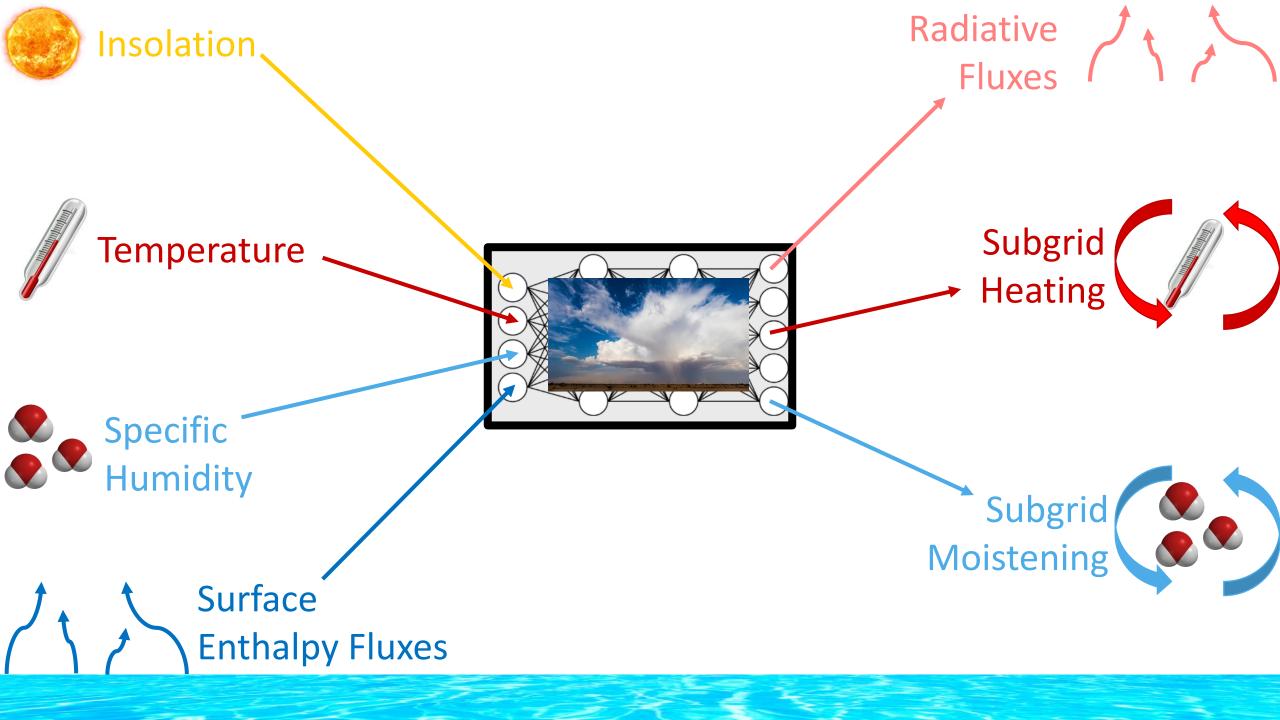
ML of Subgrid-Scale Thermodynamics



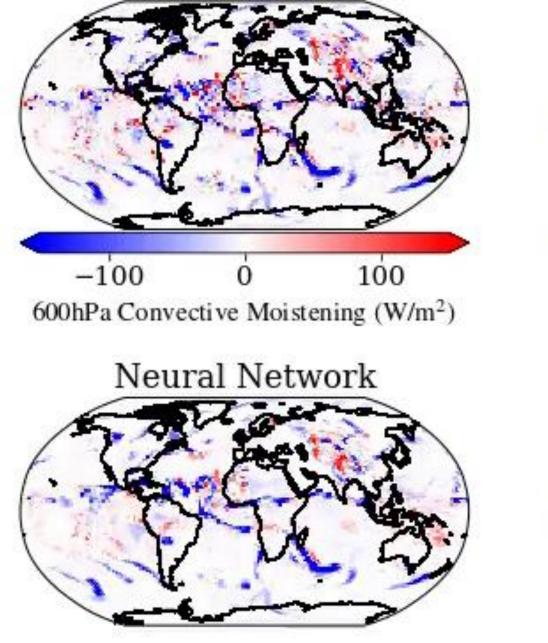
Neural Network: 20 times faster

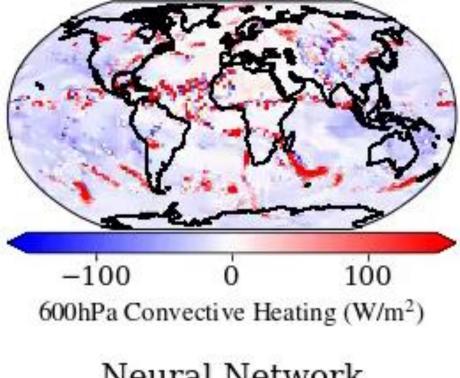
<u>Setup</u> : Super-Parameterized climate model with prescribed surface temp. Year 1 for training (42M samples), Year 2 for validation/test

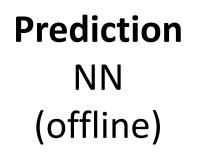
Image source: e3sm.org, Model source: Khairoutdinov et al. (2004)

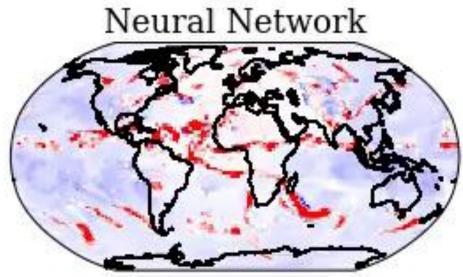


Truth Super-param. simulation









<u>Source</u>: Mooers, Pritchard, Beucler et al. (2021)

<u>See</u>: Rasp et al. (2018), Brenowitz et al. (2018,2019), Gentine et al. (2018), Yuval et al. (2020), Krasnopolsky et al. (2013)

Can we eliminate physics entirely?

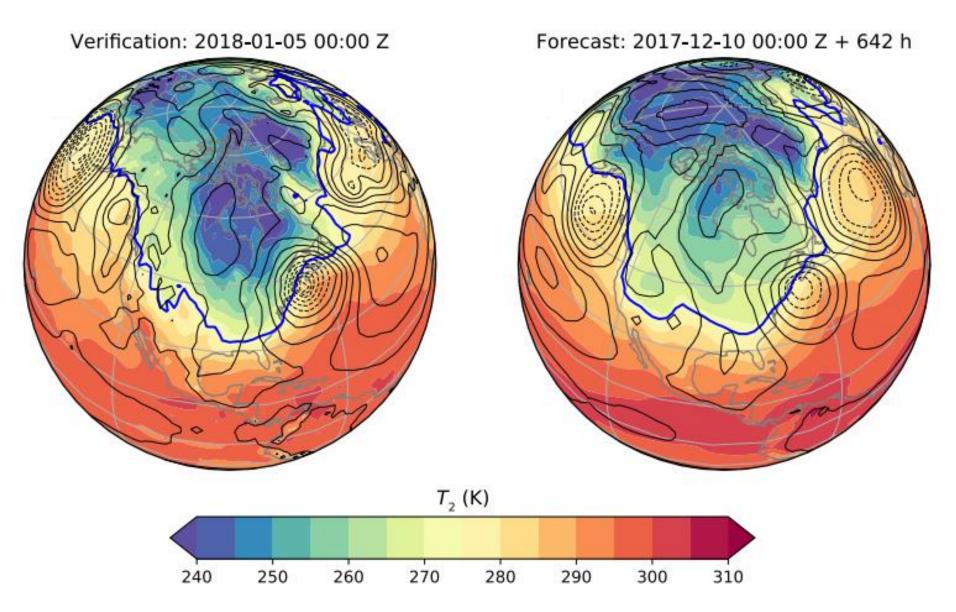


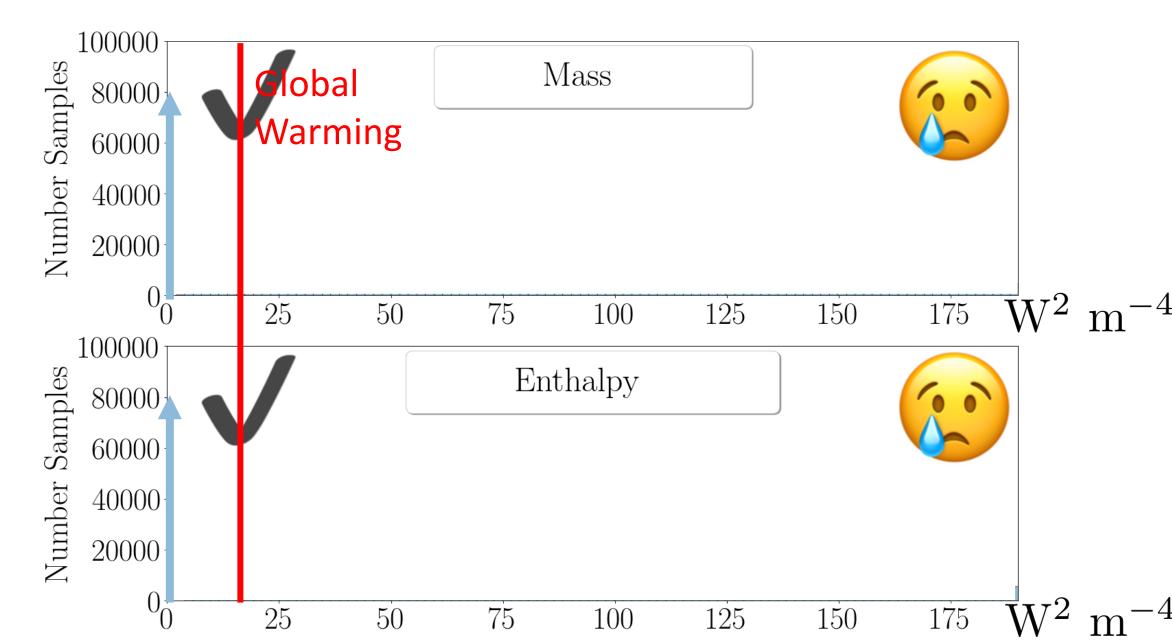
Image Source: Weyn et al. (2020), See also: Rasp et al. (2020)

Can we eliminate physics entirely?

Maybe for meteorology **Not** for climate

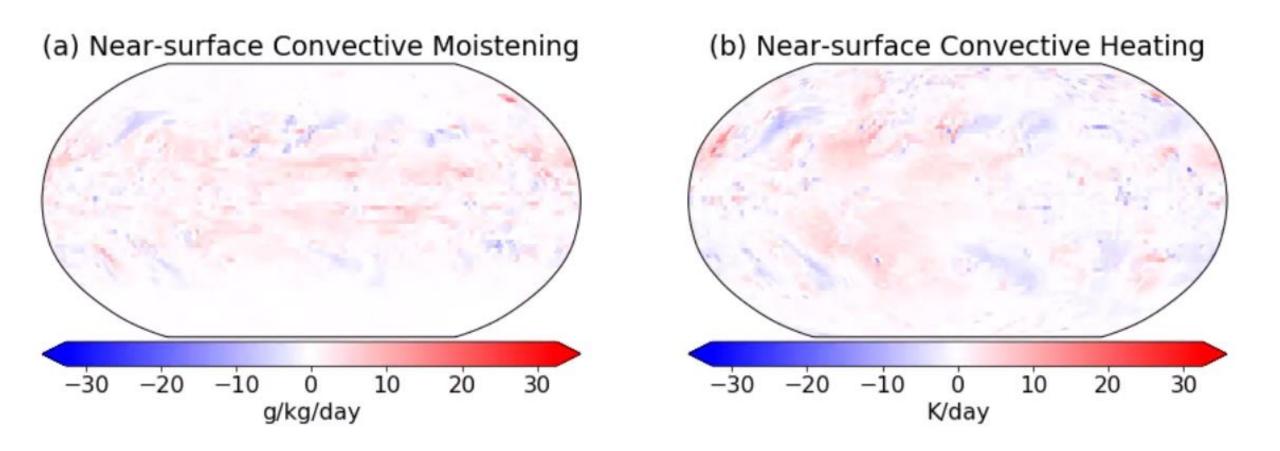
Problem 1: ML algorithms violate conservation laws
Problem 2: ML parametrization hard to interpret/trust
Problem 3: ML algorithms fail to generalize

Problem 1: Neural Nets typically violate conservation laws

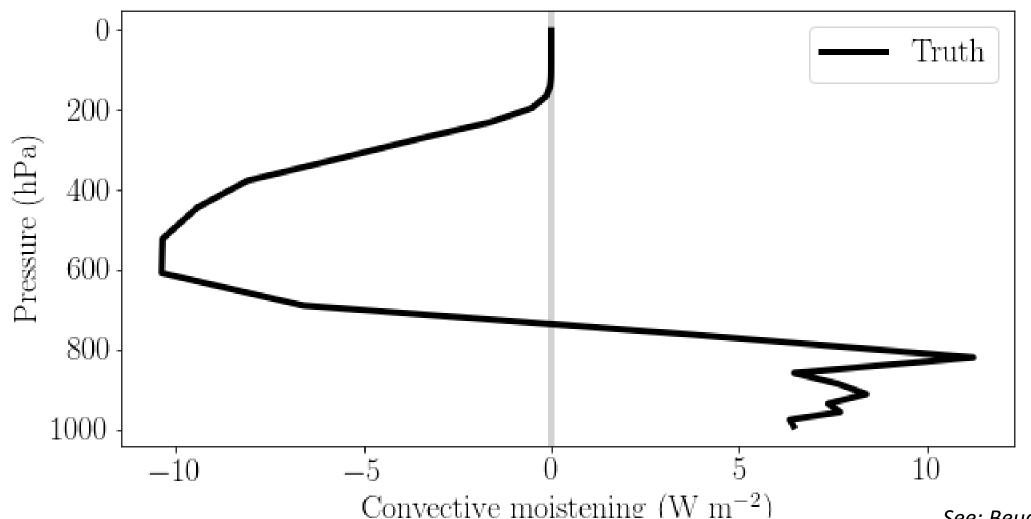


Problem 2: ML parametrizations are hard to interpret/trust

Time to Crash: 1.2day



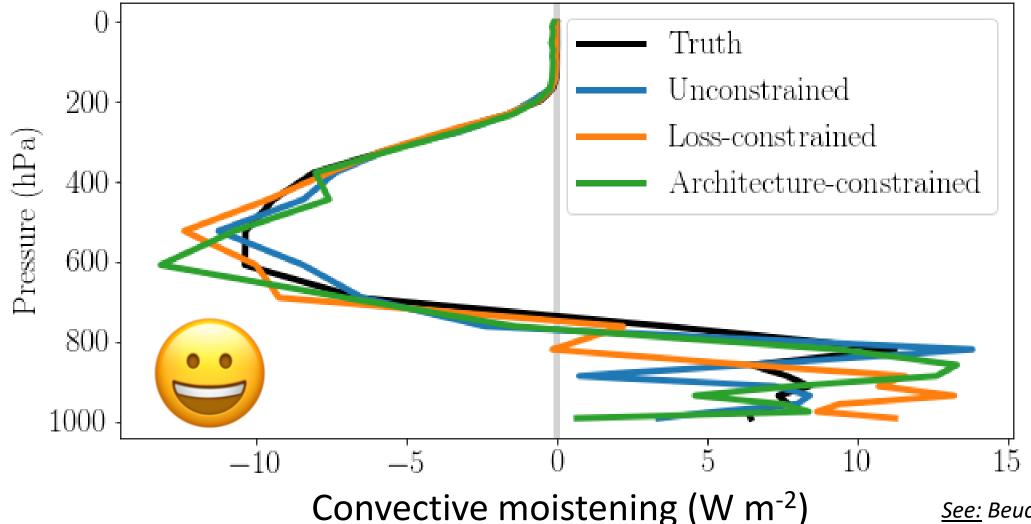
<u>See:</u> Brenowitz, Beucler et al. (2020)



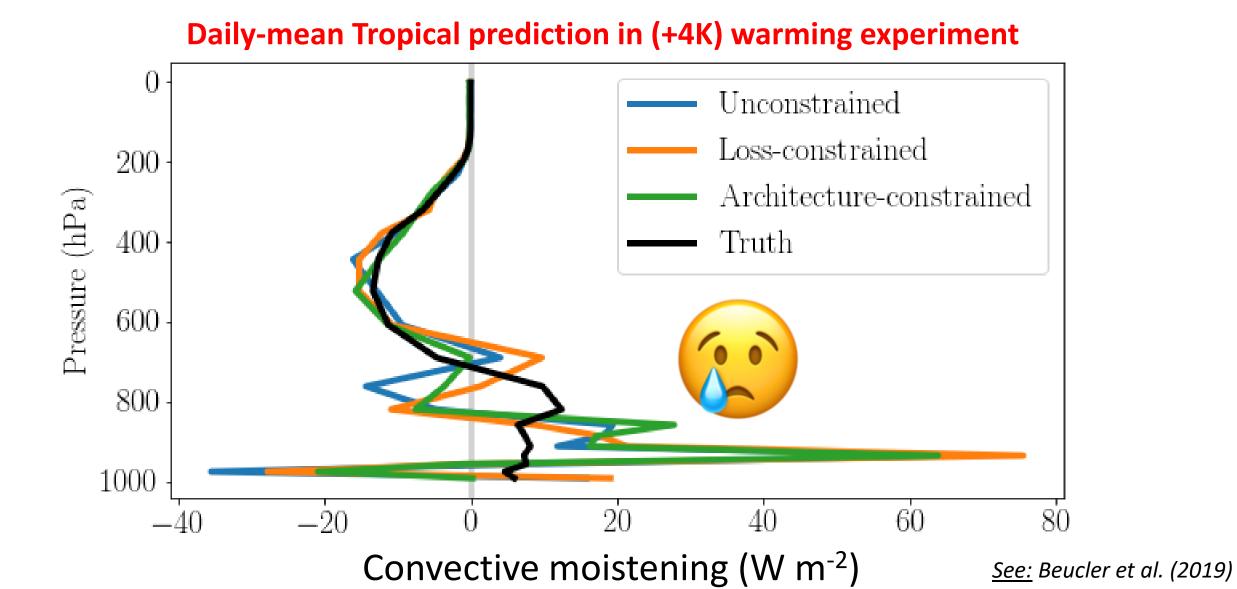
Daily-mean Tropical prediction in reference climate

See: Beucler et al. (2019)

Daily-mean Tropical prediction in reference climate



<u>See:</u> Beucler et al. (2019)



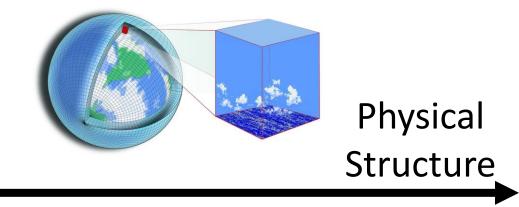
Problem 1: ML algorithms violate conservation laws
Problem 2: ML parametrization hard to interpret/trust
Problem 3: ML algorithms fail to generalize

How can we design interpretable, physically-consistent & data-driven models of convection?

How to best combine ML & physical knowledge?

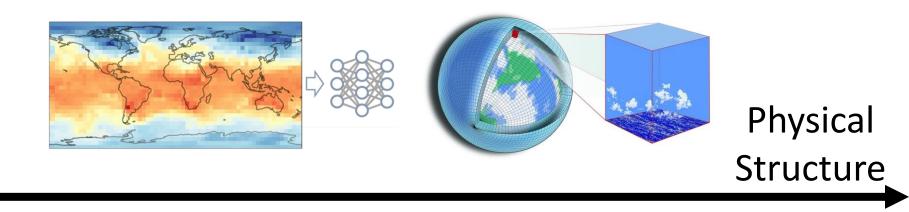
Physical Structure

<u>Reviews</u>: Willard et al. (2020), Reichstein et al. (2019), Karpatne et al. (2017), Beucler et al. (2021)



Learn Parameters of Physical Model

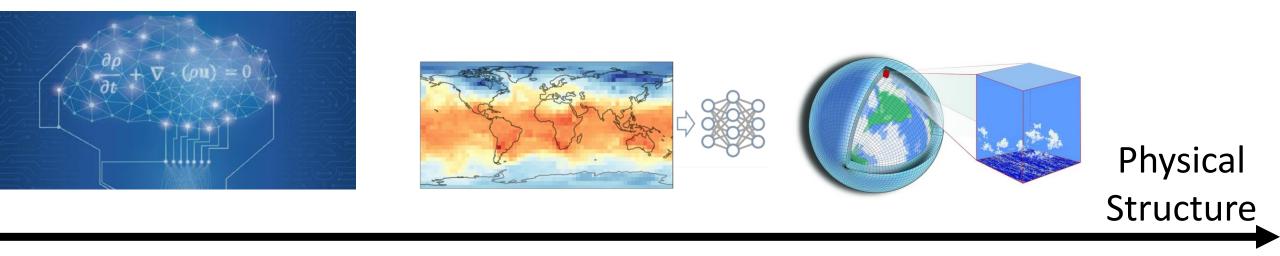
See: Schneider et al. (2017), Reichstein et al. (2019), Camps-Vall et al. (2018), Image Source: CliMA, Caltech



Bias Correction of Physical Model

Learn Parameters of Physical Model

See: Rasp and Lerch (2018), Grönquist et al. (2021), Bonavita and Laloyaux (2020), Image Source: Rasp et al. (2020)

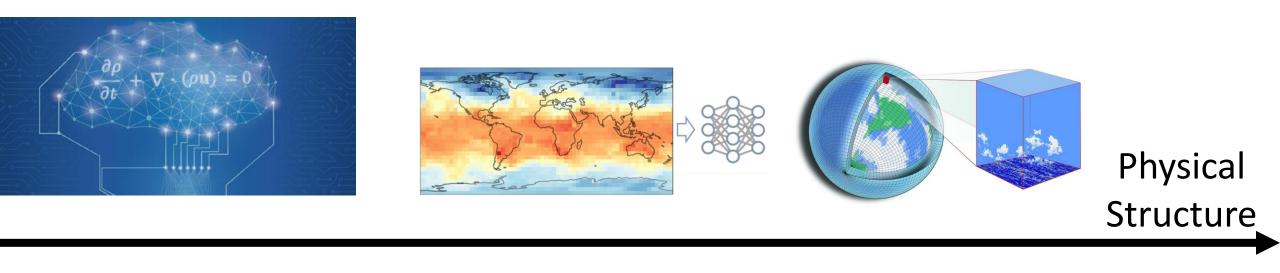


Physics-Constrained Loss or Architecture Bias Correction of Physical Model

Learn Parameters of Physical Model

See: Karpatne et al. (2017), Wu et al. (2020), Raissi et al. (2019), Image Source: R. Gauthier-Butterfield, UCI (2021)

Problem 1: Neural Nets typically violate conservation laws



Physics-Constrained Loss or Architecture Bias Correction of Physical Model

Learn Parameters of Physical Model

See: Karpatne et al. (2017), Wu et al. (2020), Raissi et al. (2019), Image Source: R. Gauthier-Butterfield, UCI (2021)

Physics-Constrained Loss Function

<u>Idea</u>: Introduce a penalty for violating conservation (\sim Lagrange multiplier):

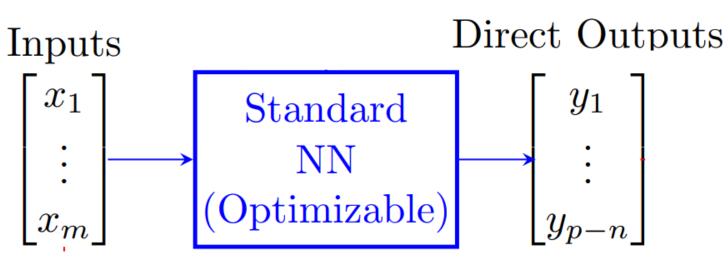
Loss = α (Squared Residual from conservation laws)+ $(1 - \alpha)$ (Mean squared error)

Physics-Constrained Architecture

<u>Idea</u>: Introduce a penalty for violating conservation (\sim Lagrange multiplier):

Loss = α (Squared Residual from conservation laws)+ $(1 - \alpha)$ (Mean squared error)

Constraint layers to enforce conservation laws to within machine precision!



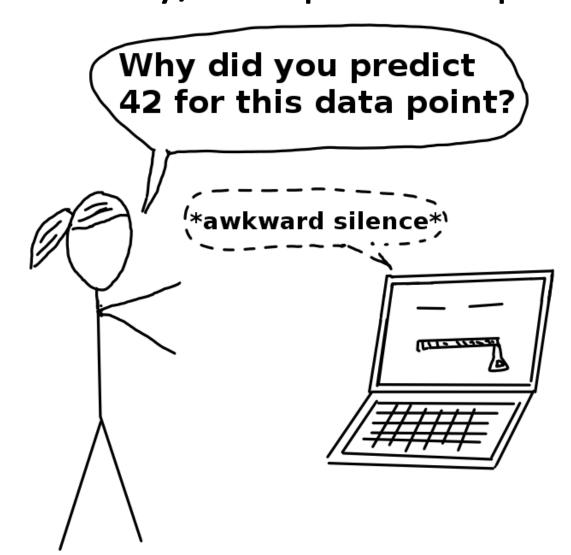
<u>See:</u> Beucler et al. (2021)

Problem 1: Neural Nets typically violate conservation laws

We can enforce conservation laws in NNs Conservation of mass, energy, and radiation

<u>See:</u> Beucler et al. (2021)

Problem 2: For climate modeling, we need trustworthy/interpretable parametrizations



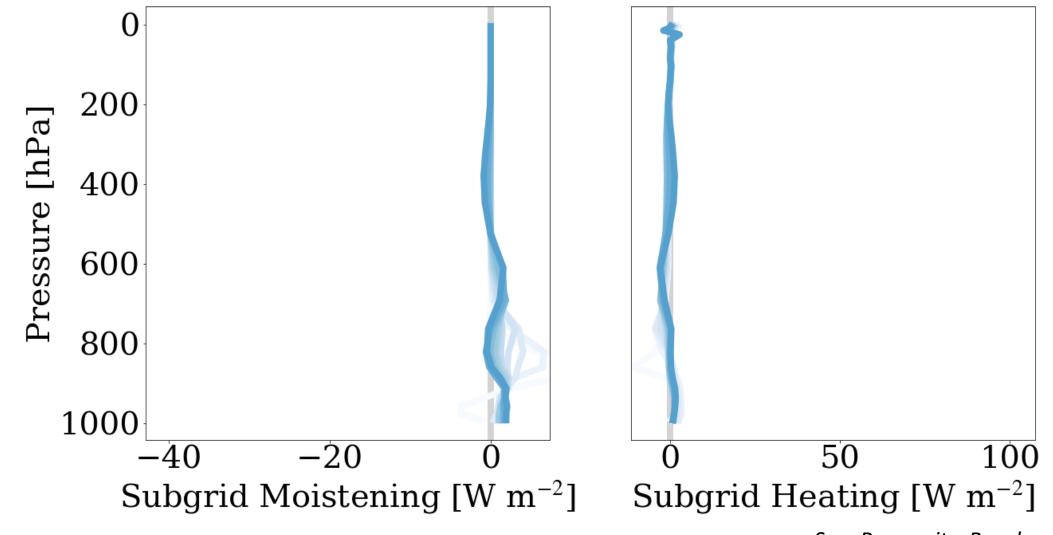
<u>Source:</u> Interpretable Machine Learning, C. Molnar (2019)

Problem 2: ML parametrizations are hard to interpret/trust

Idea: Tailor 2 NN interpretability methods to parameterization convection

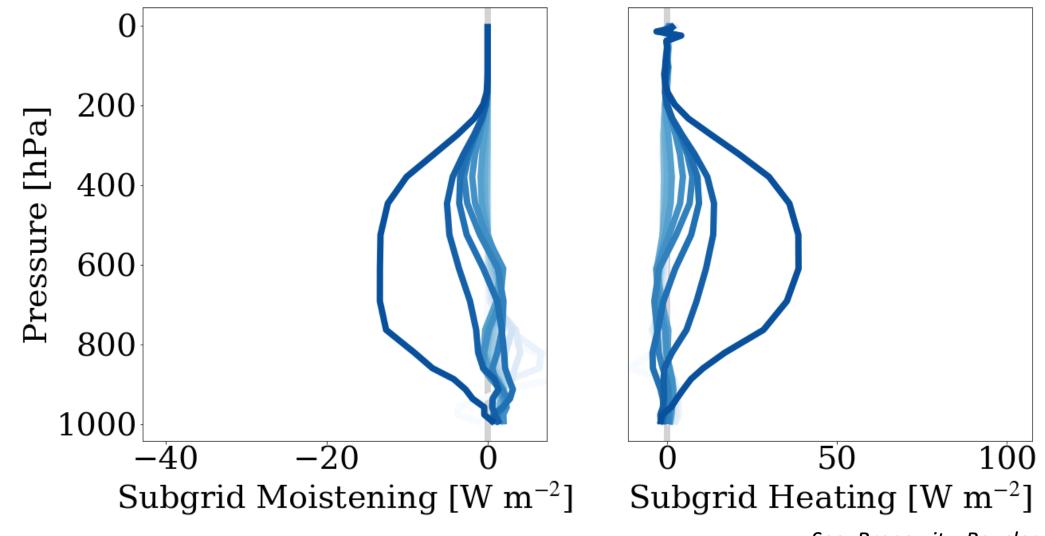
<u>See</u>: McGovern et al. (2019), Toms et al. (2019), Montavon et al. (2018), Molnar et al. (2018)

Partial Dependence Plots confirm that at fixed l.t. stability, mid-tropospheric moisture fuels convection $QM = 20.0 \text{kg/m}^2$



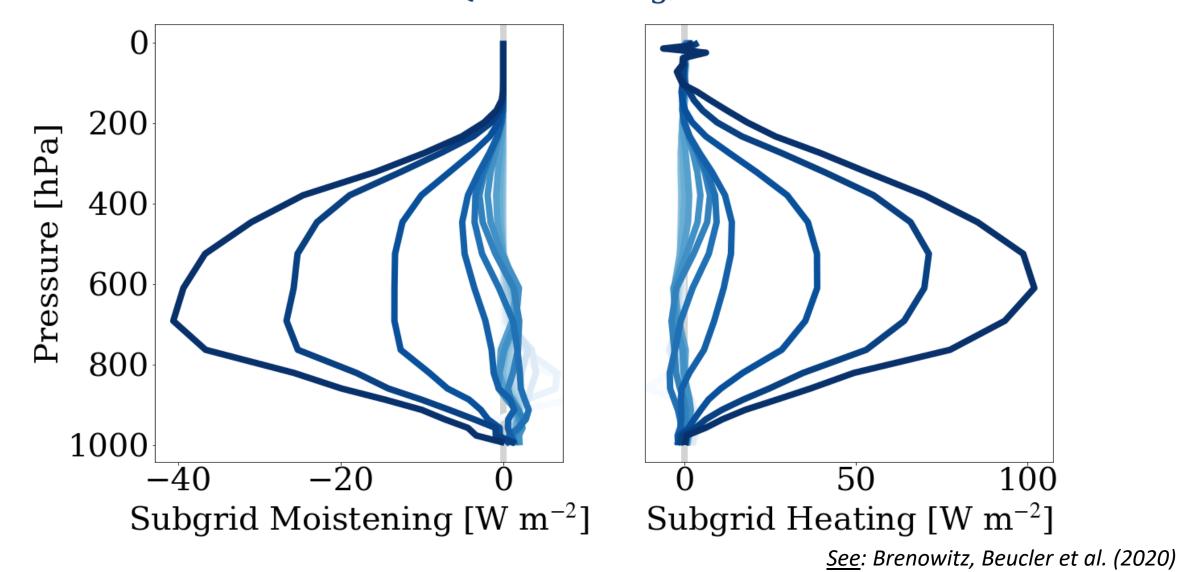
<u>See</u>: Brenowitz, Beucler et al. (2020)

Partial Dependence Plots confirm that at fixed l.t. stability, mid-tropospheric moisture fuels convection $QM = 30.5 \text{kg/m}^2$

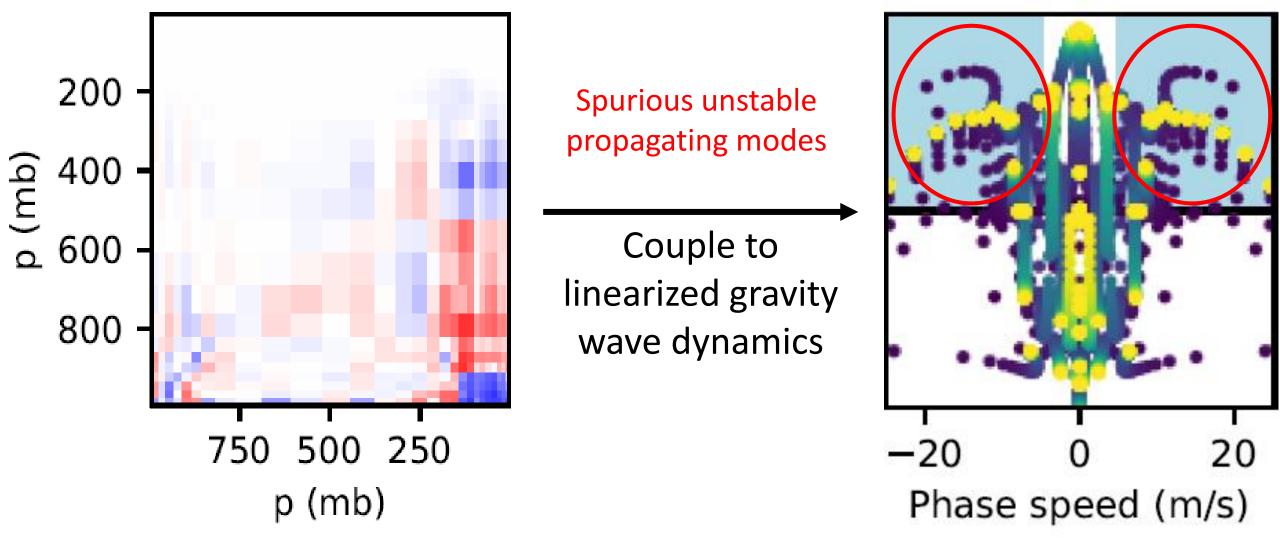


<u>See</u>: Brenowitz, Beucler et al. (2020)

Partial Dependence Plots confirm that at fixed l.t. stability, mid-tropospheric moisture fuels convection $QM = 34.7 \text{kg/m}^2$



Jacobian calculated via automatic differentiation helps interpret and stabilize parameterization



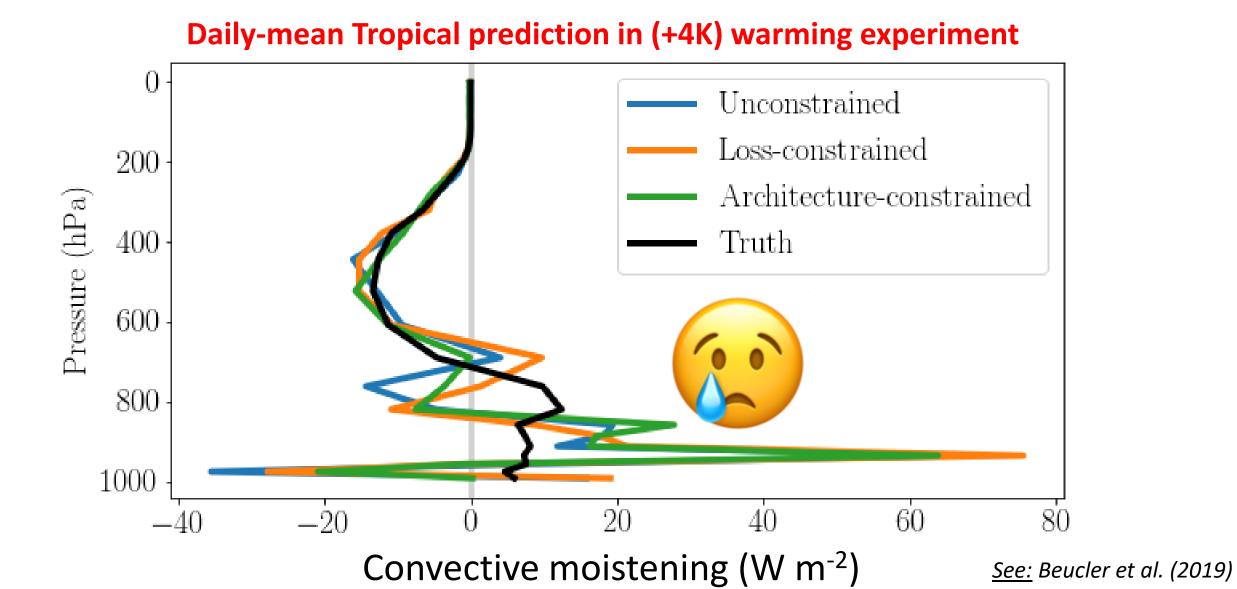
<u>See</u>: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018), Brenowitz, Beucler et al. (2020)

Problem 2: ML parametrizations are hard to interpret/trust

We can tailor interpretability methods Partial Dependence Plots + Gradients

Also applies to Attribution Maps

<u>See</u>: Brenowitz, Beucler et al. (2020)



Idea: Break the model even more!

Image source: IT Biz Advisor

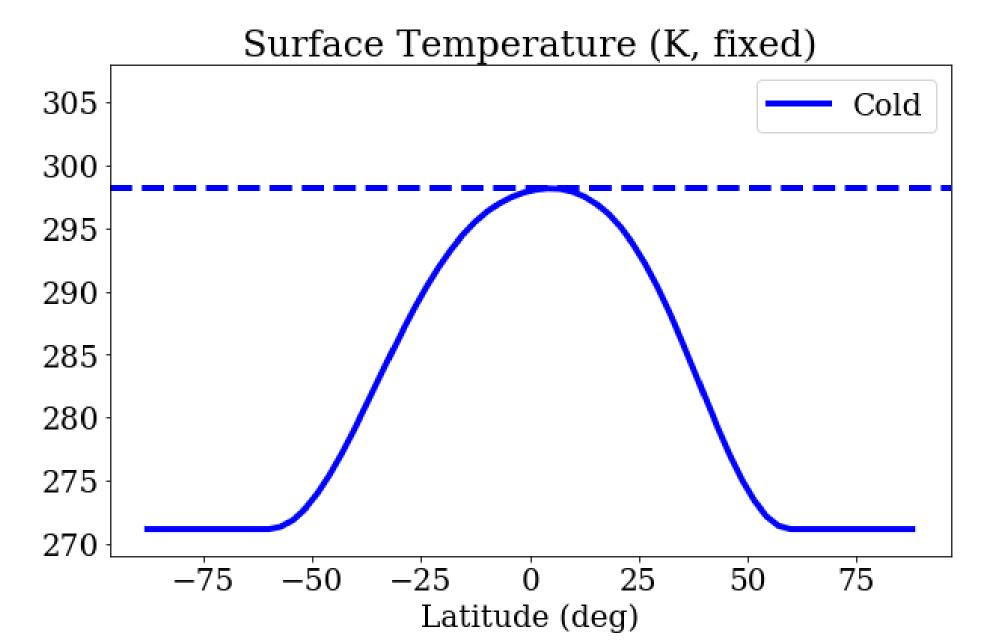
Generalization Experiment: Uniform +8K warming

Training and Validation on cold aquaplanet simulation

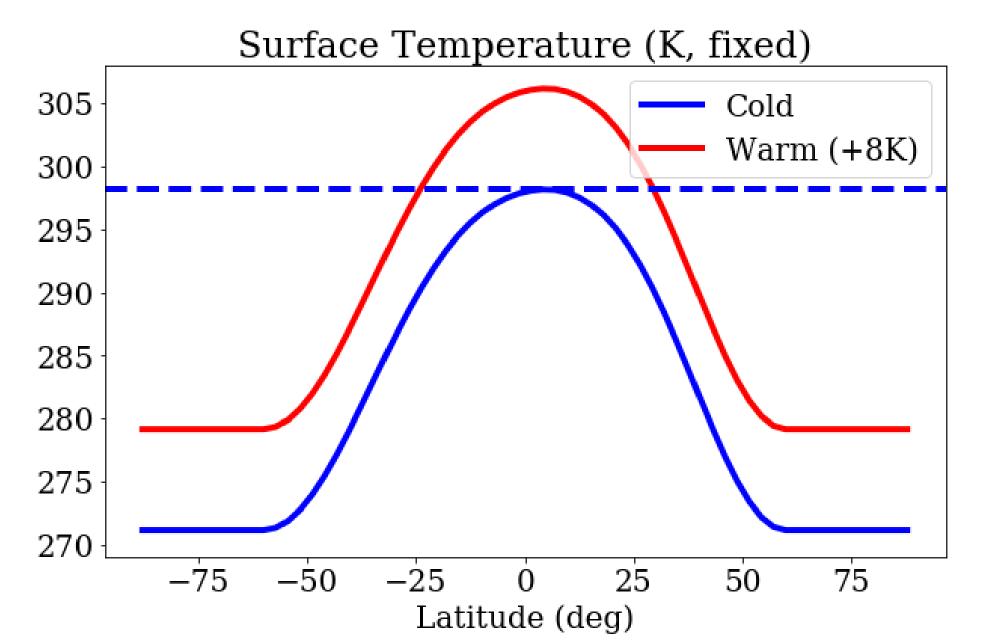
Test on warm aquaplanet simulation

Images: Rashevskyi Viacheslav, Sebastien Decoret

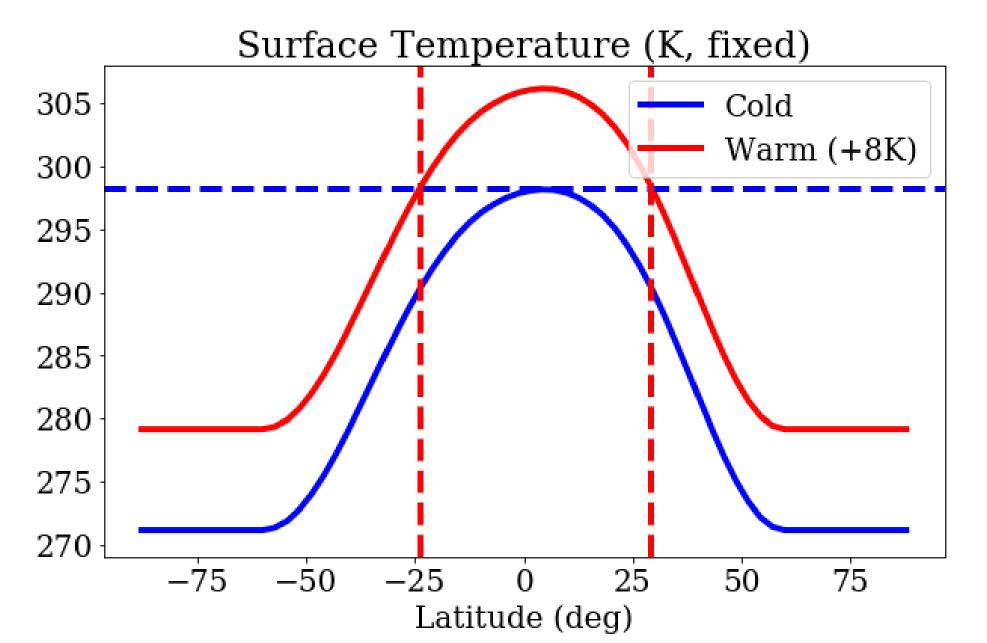
Generalization Experiment: Uniform +8K warming



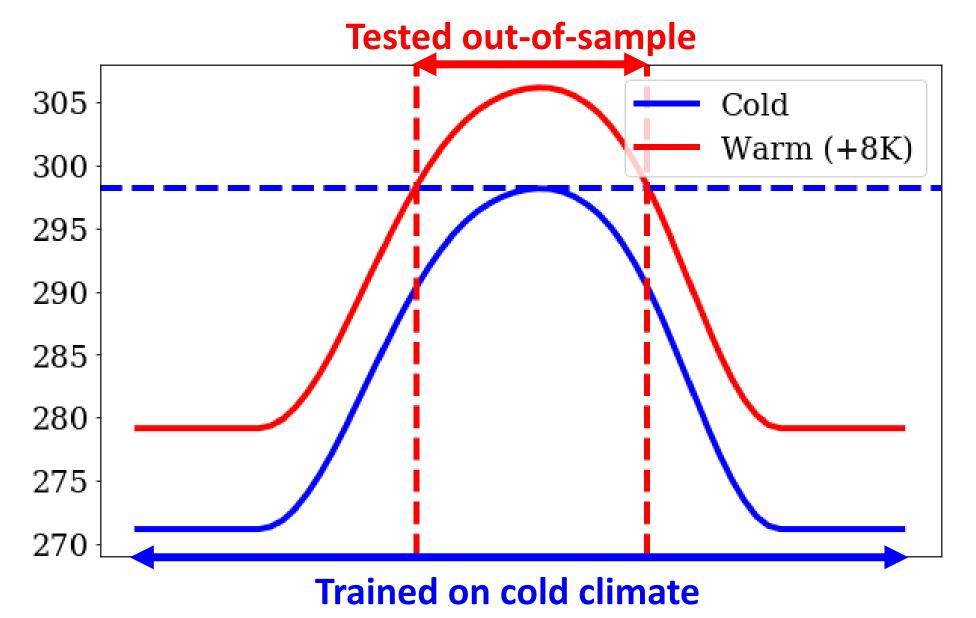
Generalization Experiment: Uniform +8K warming



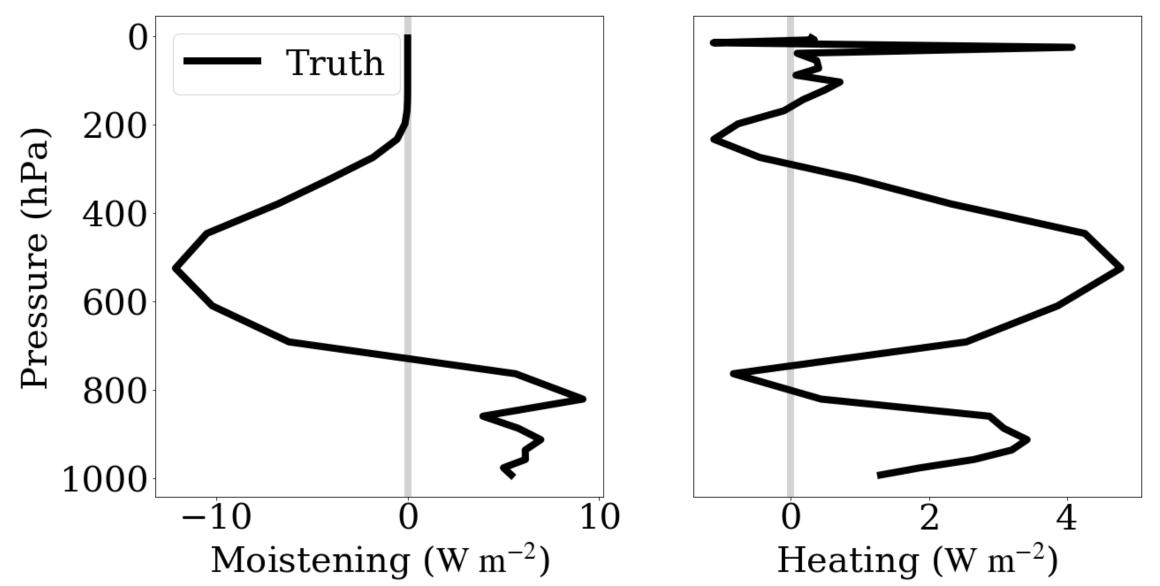
Generalization Experiment: Uniform +8K warming



Generalization Experiment: Uniform +8K warming



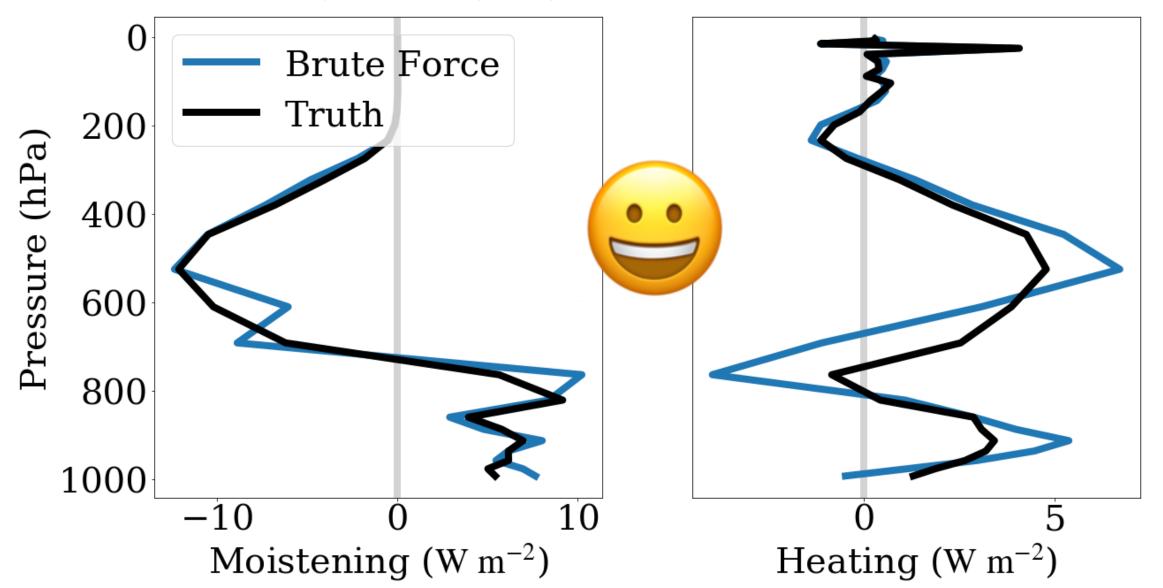
Problem 3: NNs fail to generalize to unseen climates



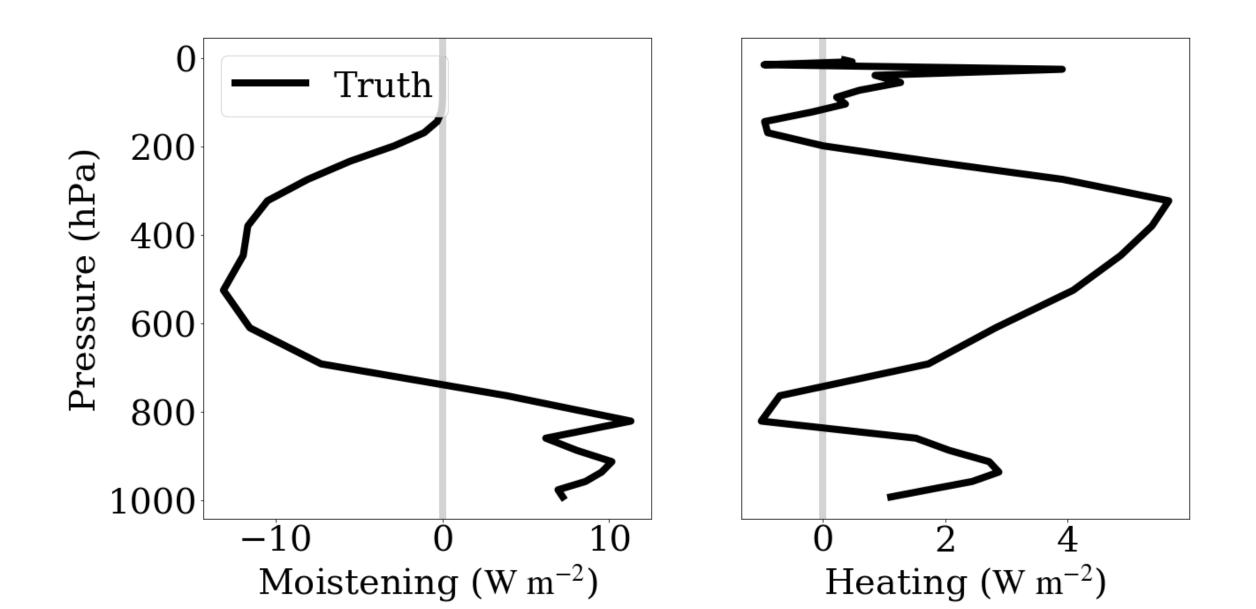
Daily-mean Tropical prediction in cold climate

Problem 3: NNs fail to generalize to unseen climates

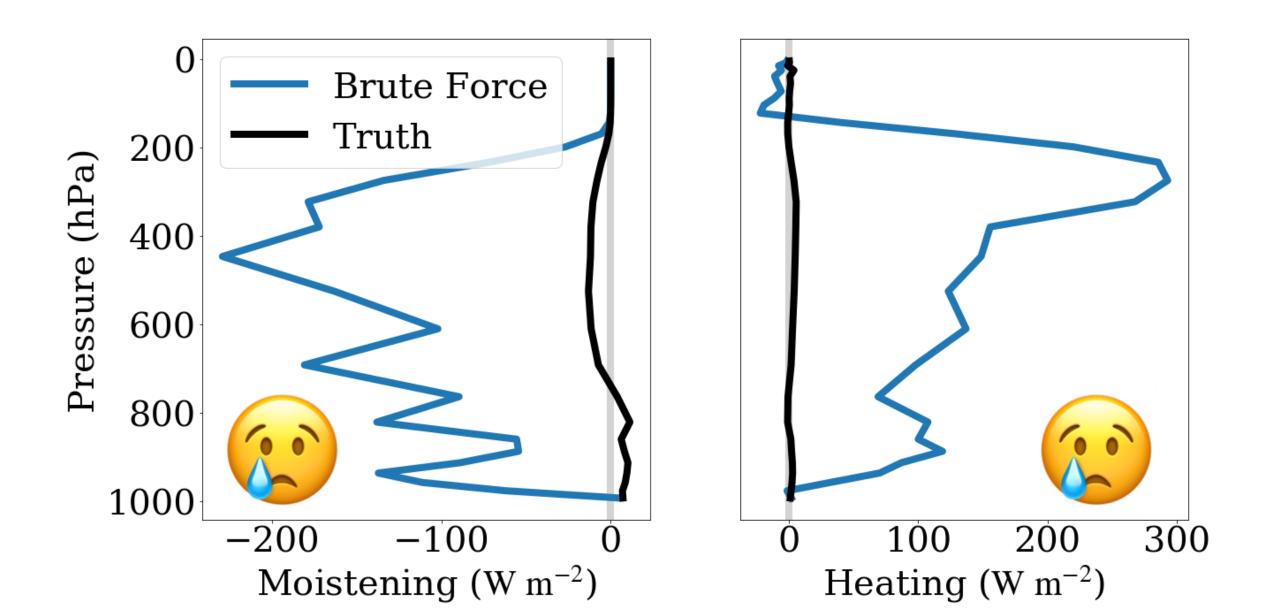
Daily-mean Tropical prediction in cold climate

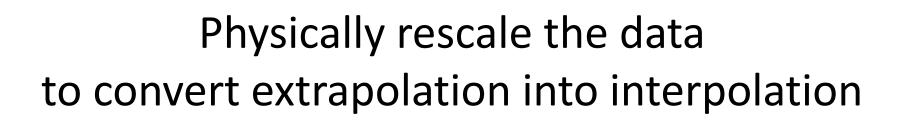


Daily-mean Tropical prediction in warm climate

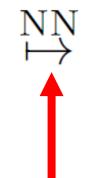


Daily-mean Tropical prediction in warm climate





Specific humidity (p)Temperature (p)Surface Pressure Solar Insolation Latent Heat Flux Sensible Heat Flux

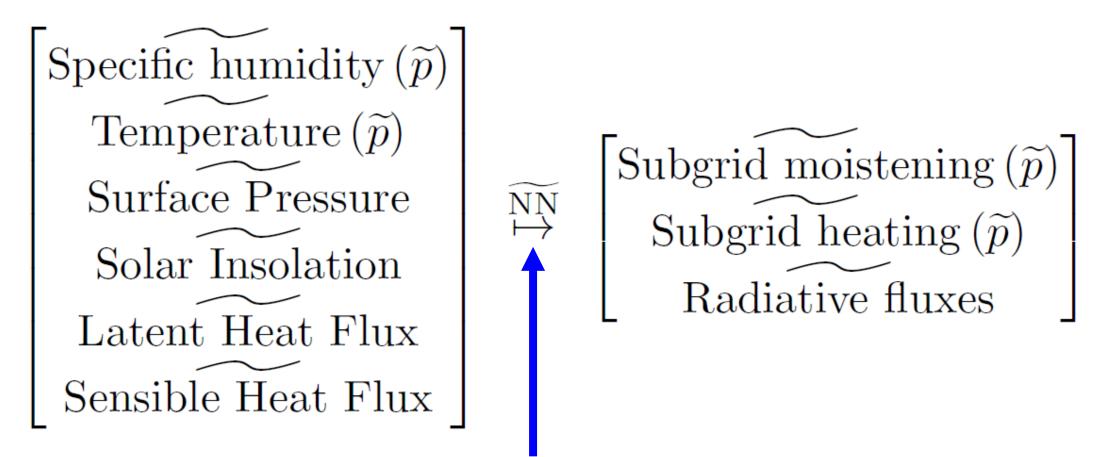


 $\begin{bmatrix} \text{Subgrid moistening}(p) \\ \text{Subgrid heating}(p) \\ \text{Radiative fluxes} \end{bmatrix}$

Brute Force: Not Climate-Invariant

Physically rescale the data to convert extrapolation into interpolation

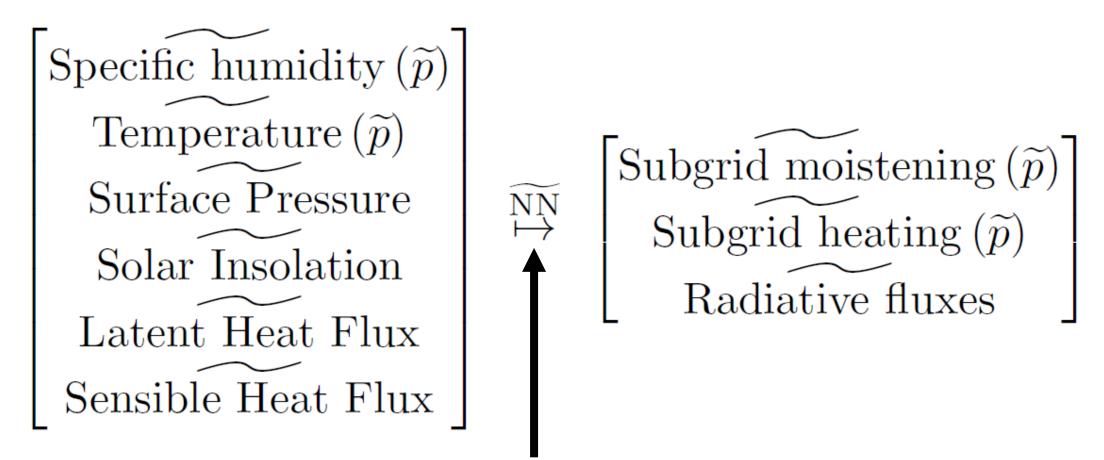
<u>Goal</u>: Uncover climate-invariant mapping from climate to convection



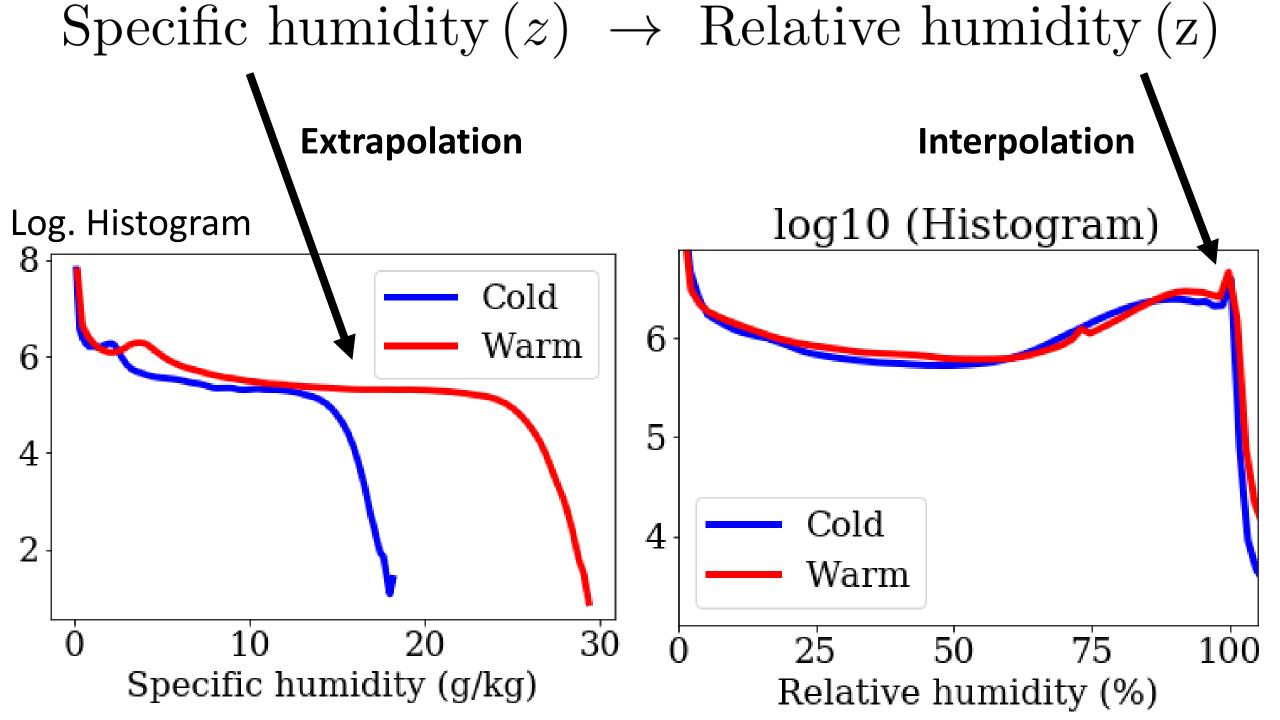
Goal: Climate-Invariant

Physically rescale the data to convert extrapolation into interpolation

<u>Goal</u>: Uncover climate-invariant mapping from climate to convection

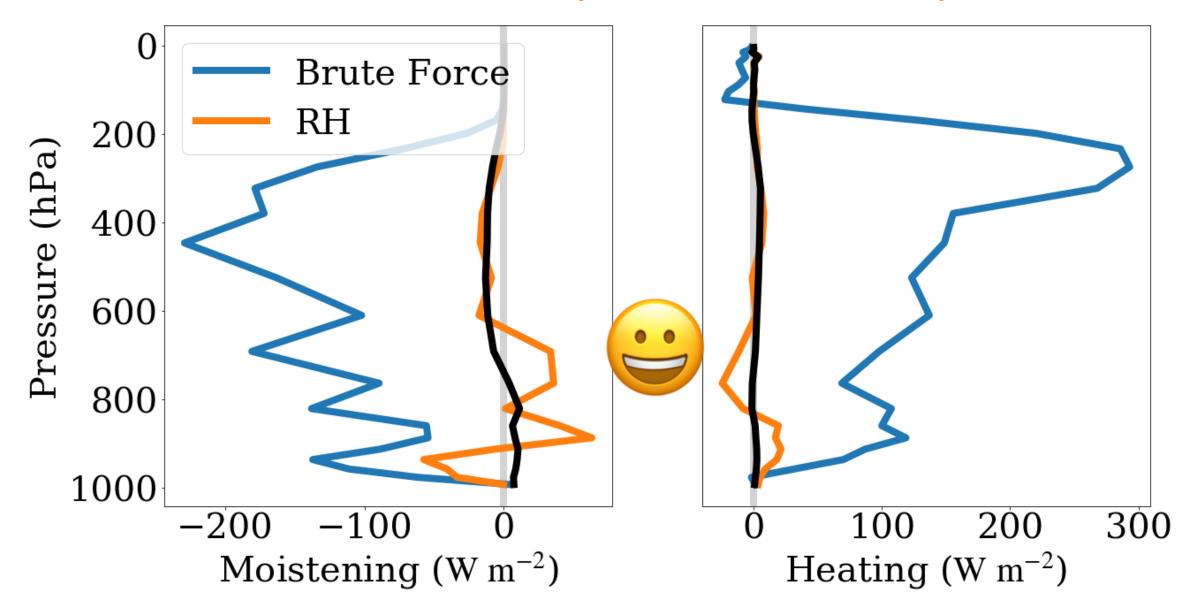


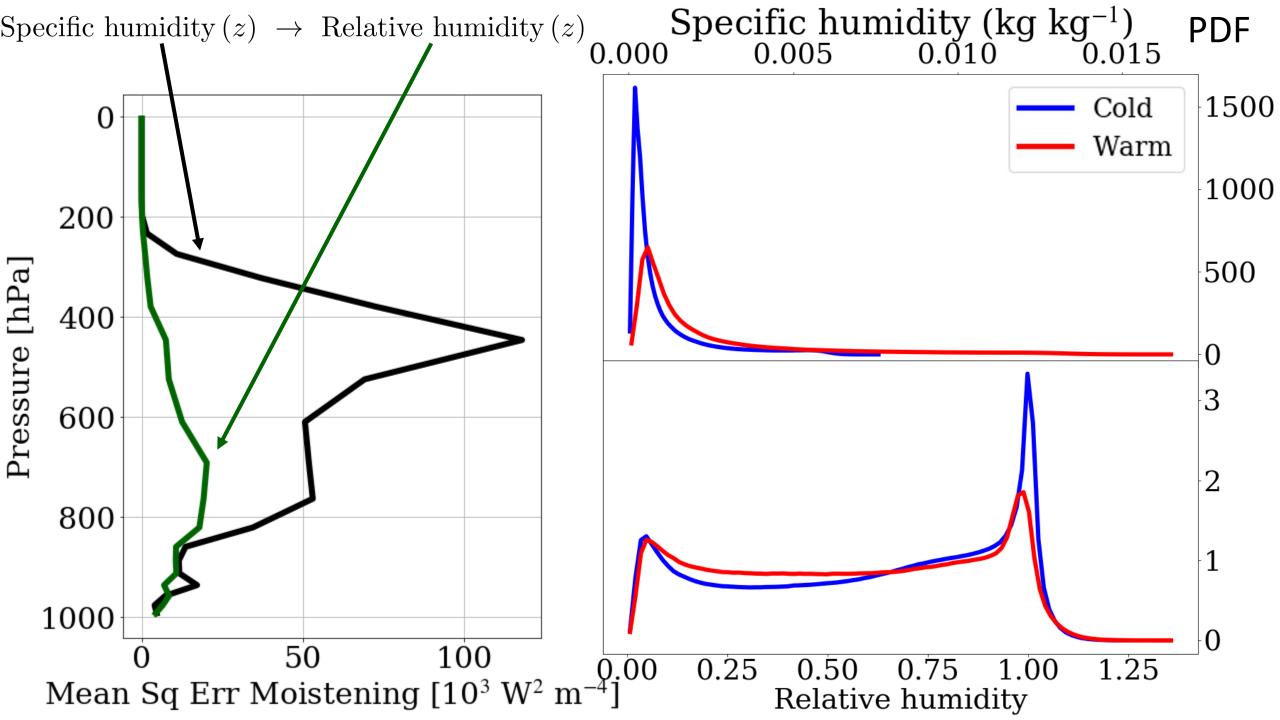
How to choose the physical rescaling?



Specific humidity $(z) \rightarrow$ Relative humidity (z)

Generalization improves dramatically!

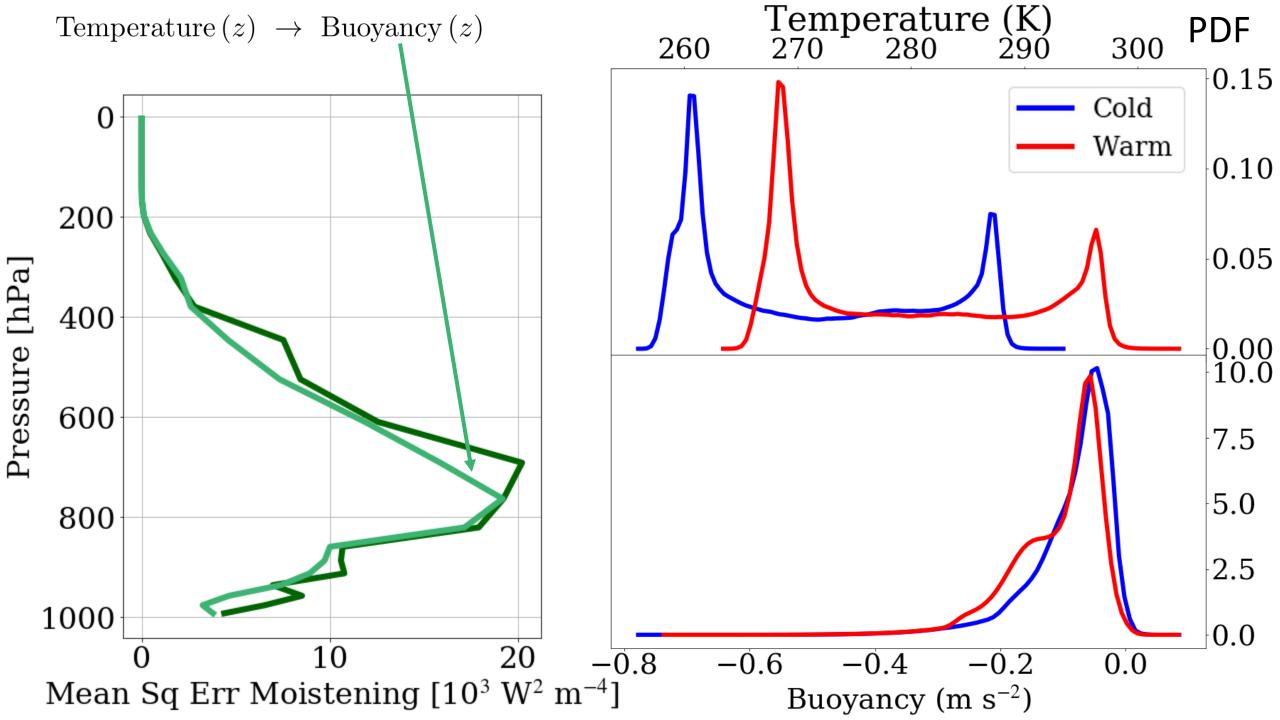


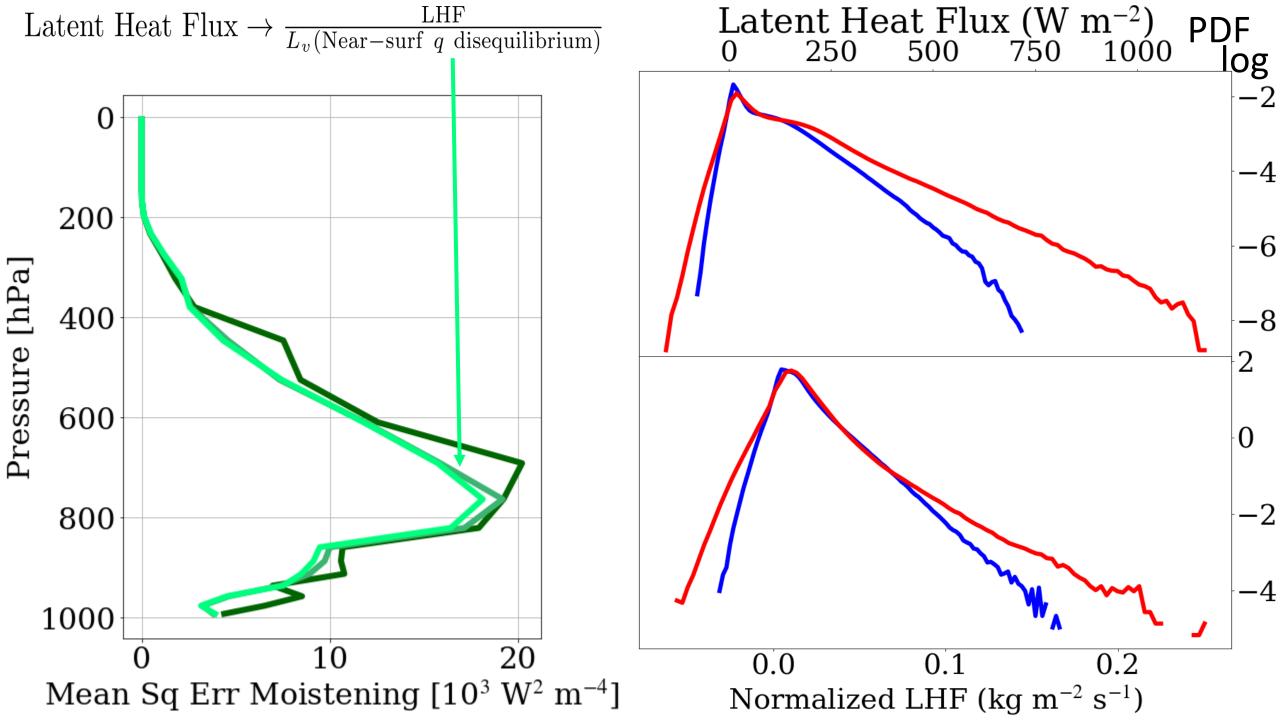


Observations suggest a strong relationship between buoyancy & moist convection across scales

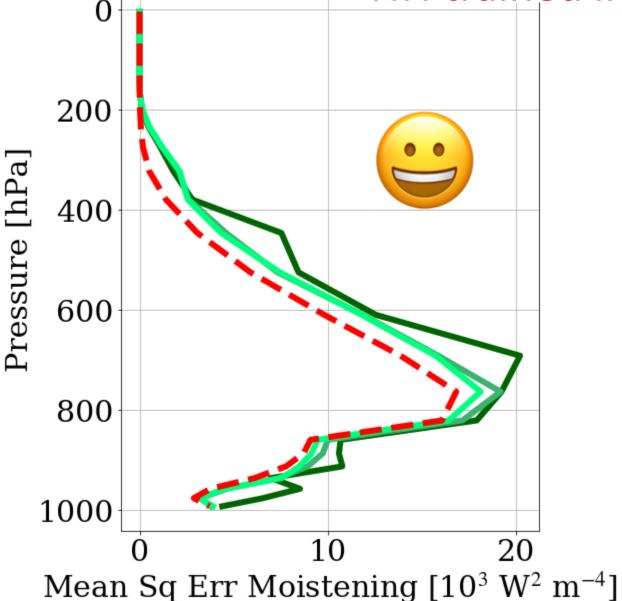
Buoyancy
$$(z) \stackrel{\text{def}}{=} g \times \frac{\text{Temp parcel} - \text{Temp}(z)}{\text{Temp}(z)}$$

<u>See:</u> Schiro et al. (2018), Ahmed & Neelin (2018), Ahmed et al. (2020)

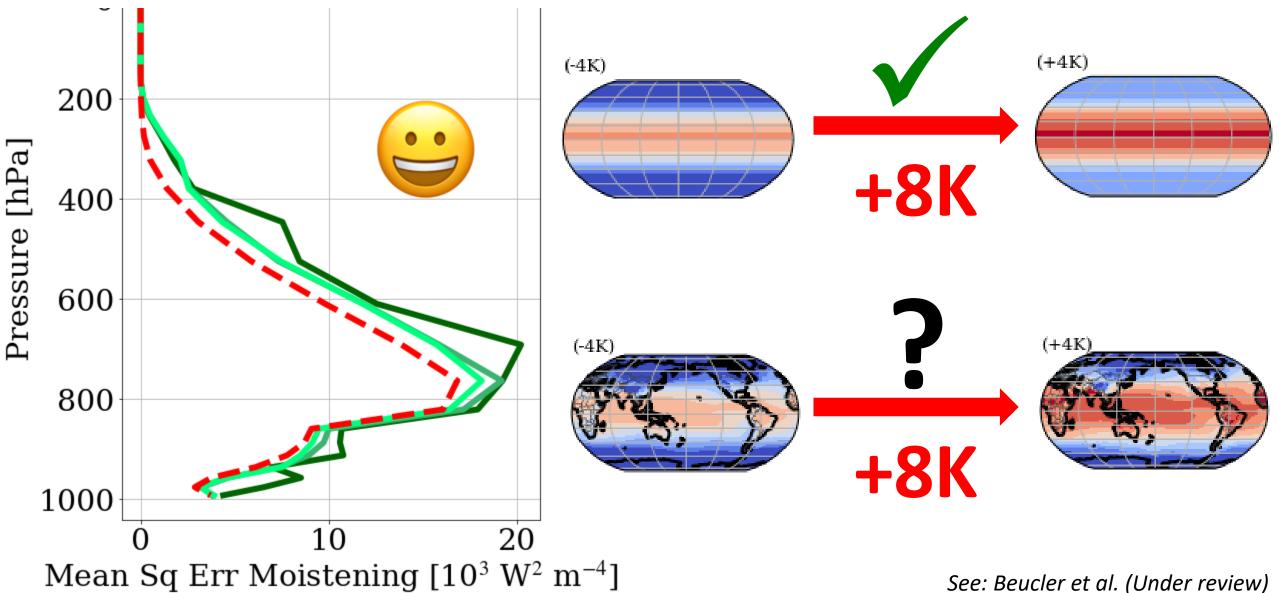




Climate-Invariant NNs generalization error close to NN trained in warm climate



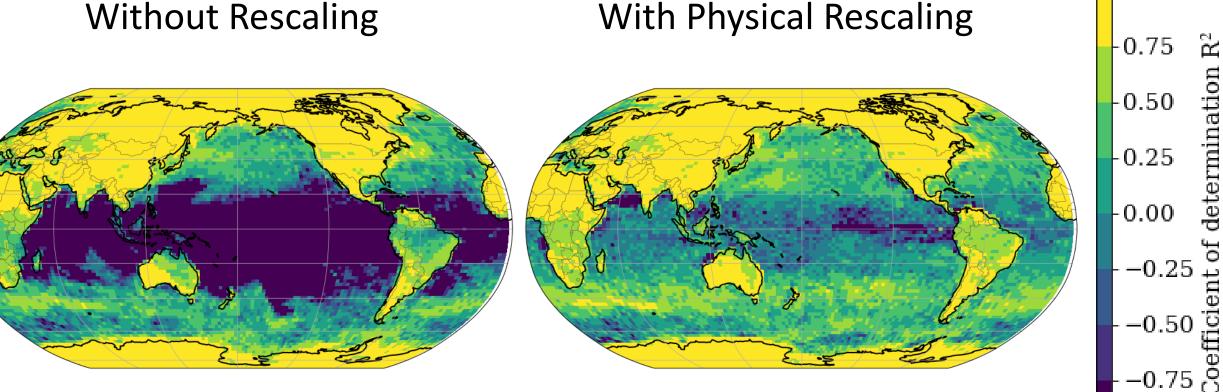
Problem 3: Physically Rescaling Inputs allows NNs to generalize from cold to warm climate



Physically-Rescaled Neural Networks Generalize Better Across Climates in Earth-like configurations

1.00

Without Rescaling

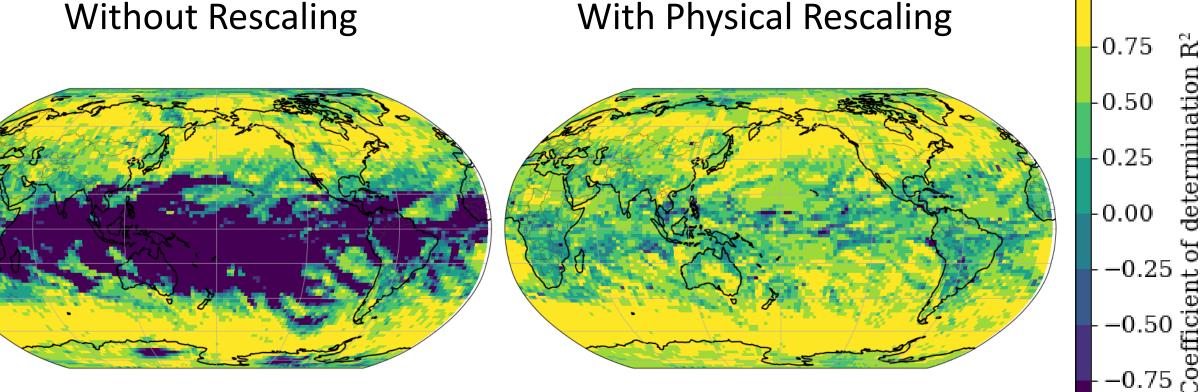


Near-Surface Subgrid Heating

Physically-Rescaled Neural Networks Generalize Better Across Climates in Earth-like configurations

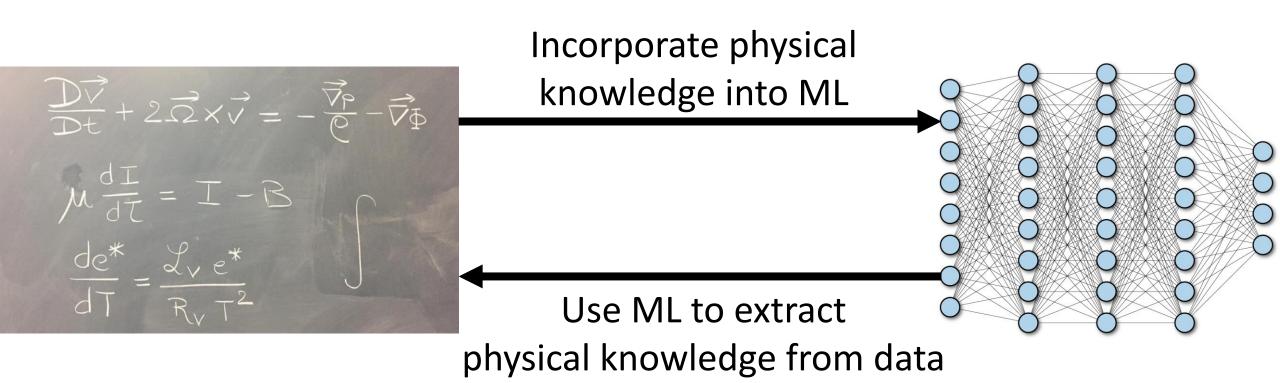
1.00

Without Rescaling



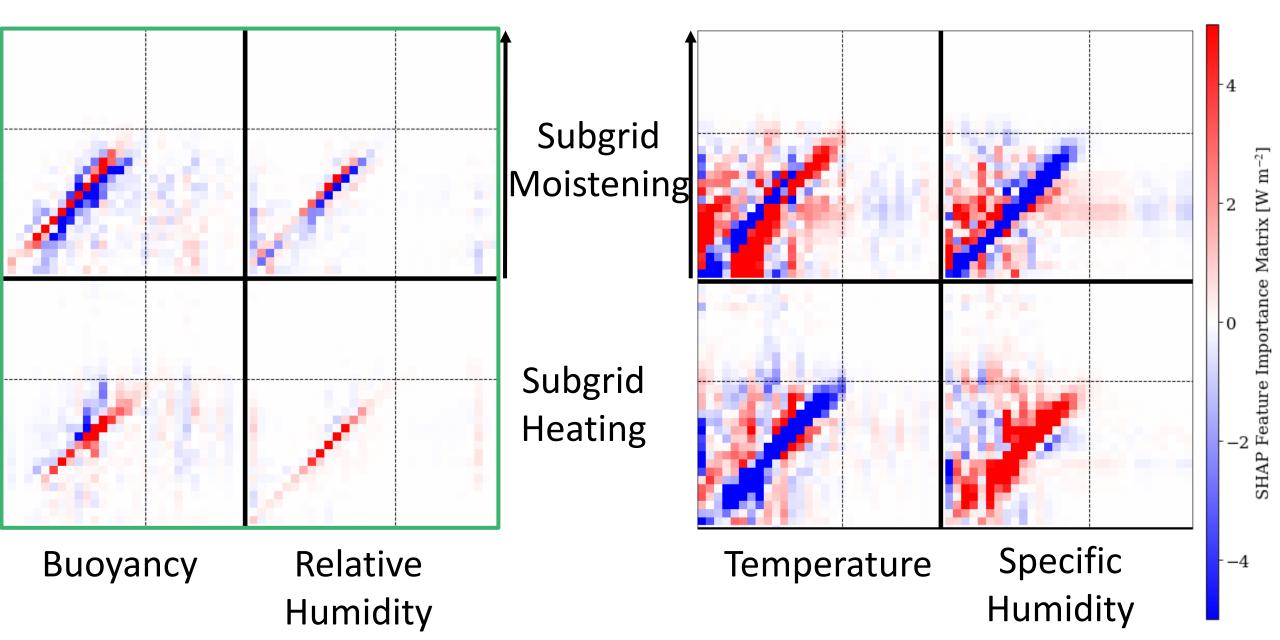
Mid-Tropospheric Subgrid Heating

Outlook 1: Extracting Physics from Data

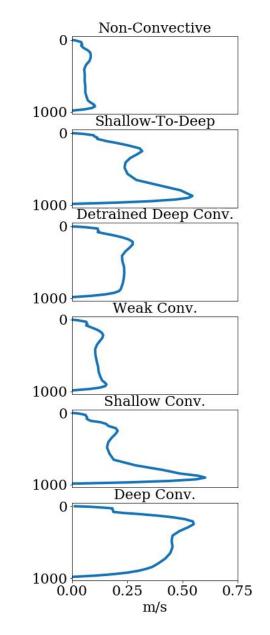


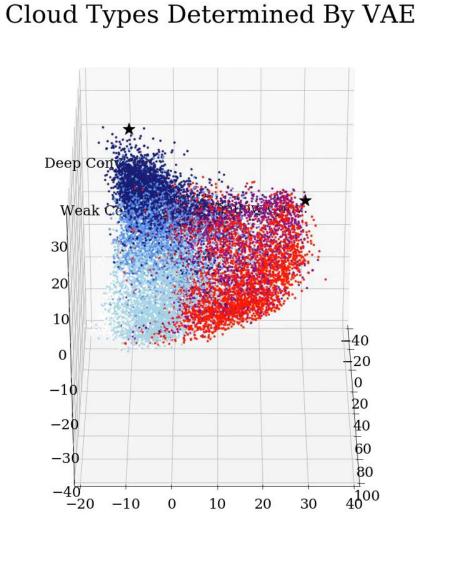
<u>See</u>: Barnes & Ebert-Uphoff (2020)

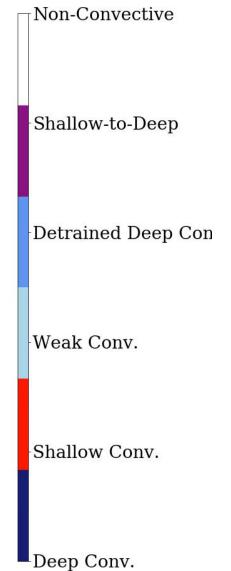
Climate-invariant NNs more local than Brute-Force NNs



Extracting convective regimes from cloud-resolving data

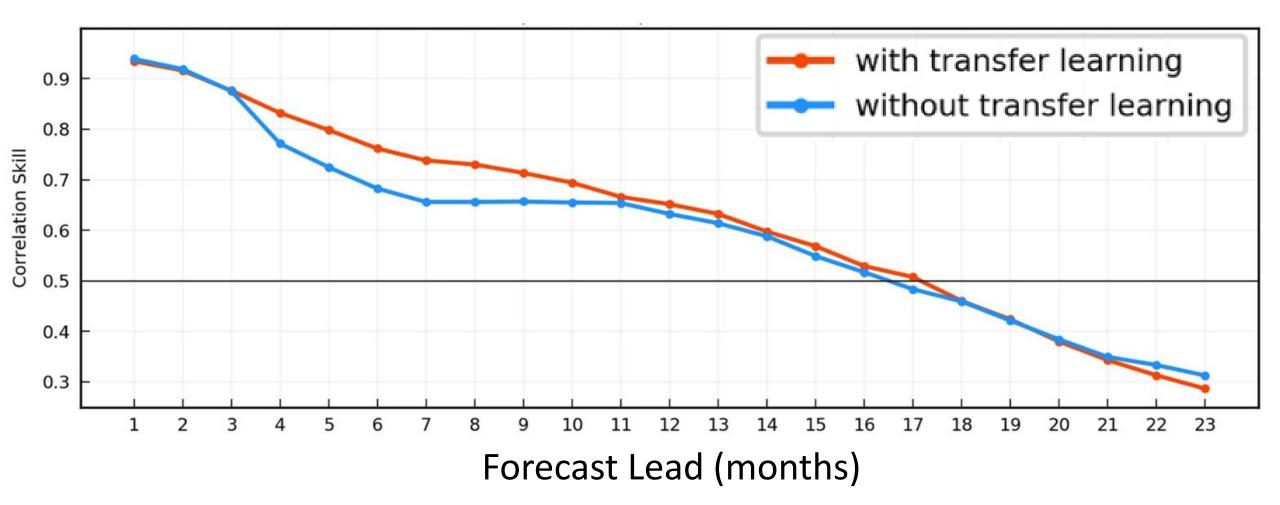






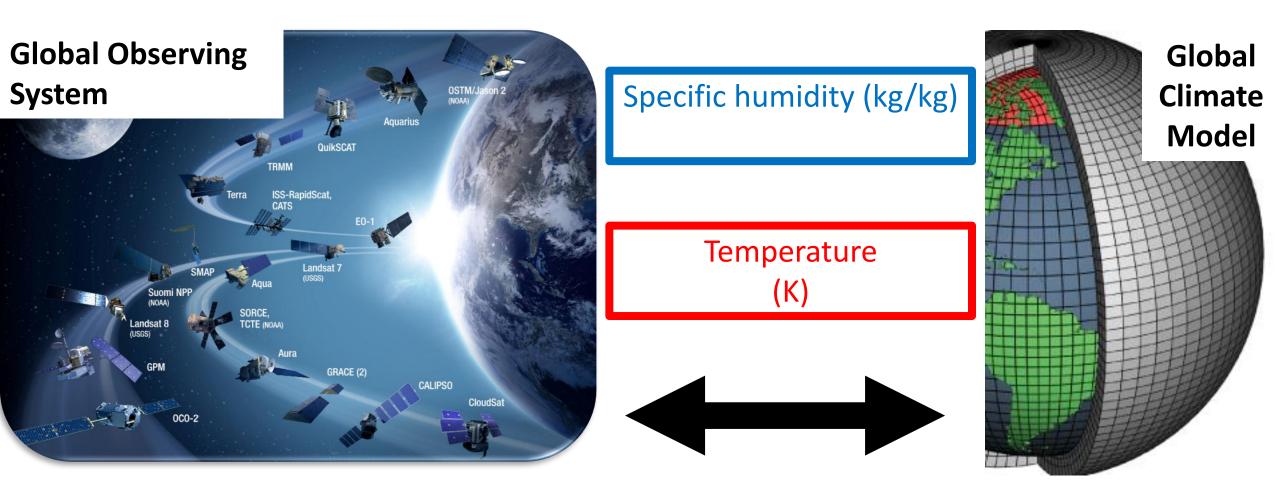
<u>Source</u>: Mooers, Tuyls, Mandt, Pritchard, & Beucler (2020)

Outlook 2: Transferring knowledge across climates/geographies/models/observations

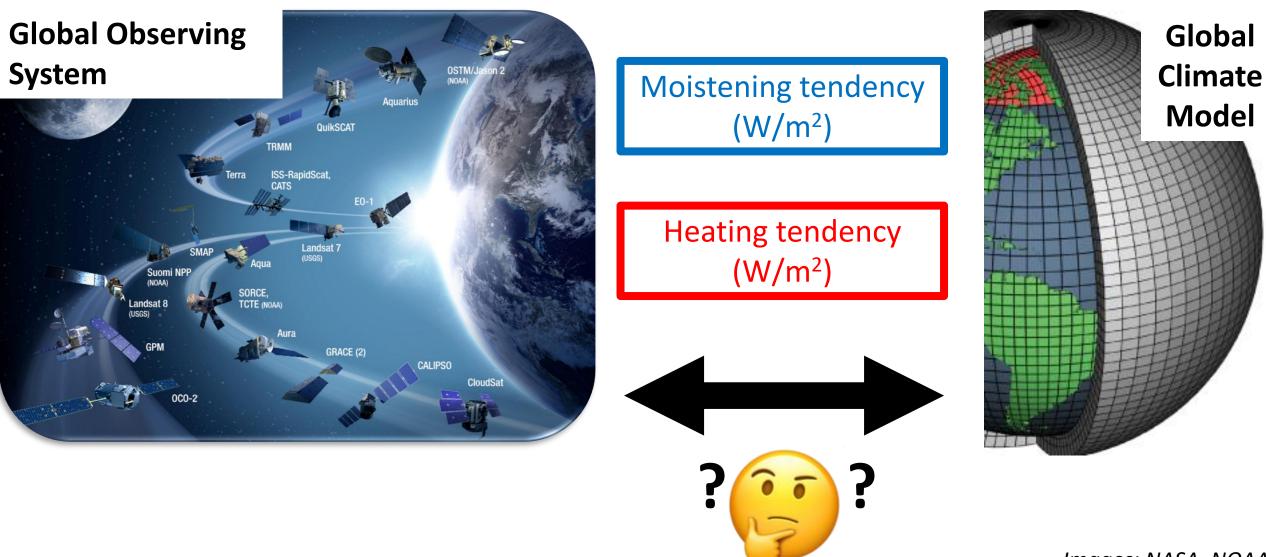


Adapted from: Ham et al. (2019), See: Rasp & Thuerey (2021)

Problem: Observations of convection are sparse



Problem: Observations of convection are sparse

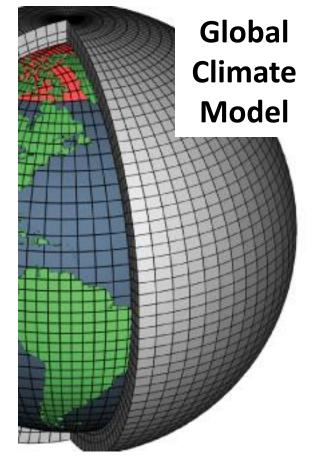


Images: NASA, NOAA

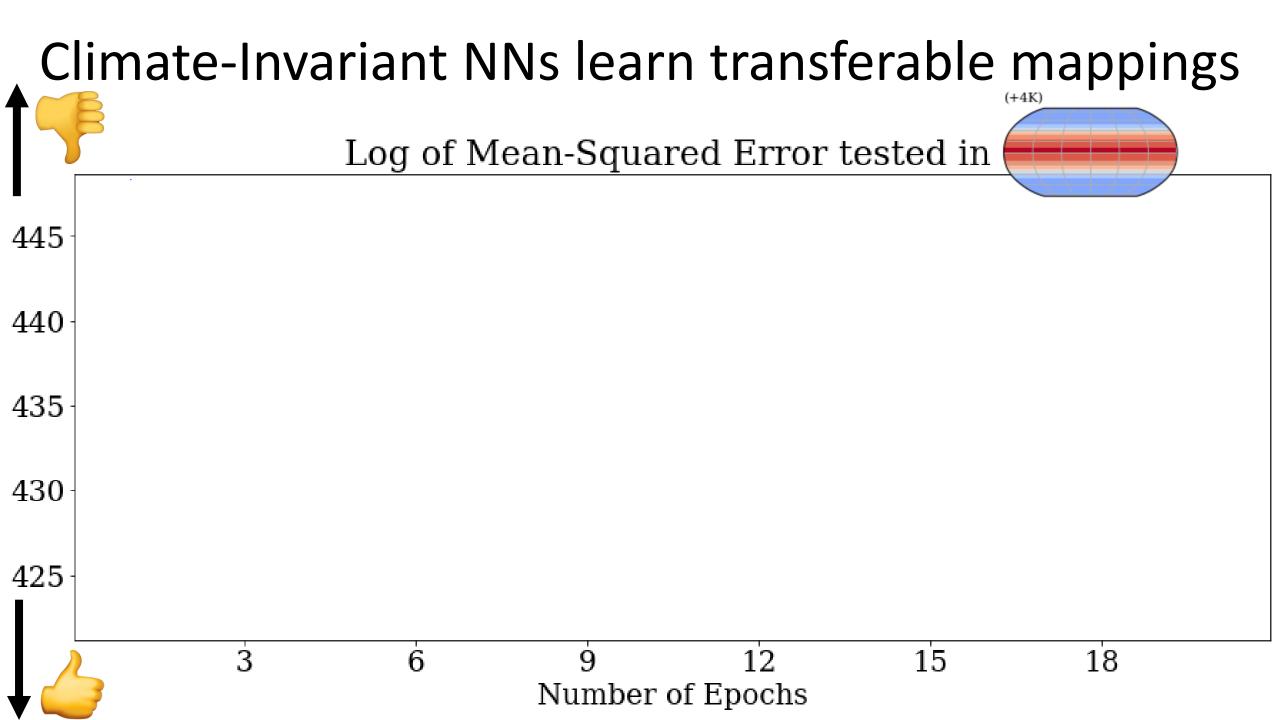
Problem: Observations of convection are sparse

Moistening tendency (W/m²)

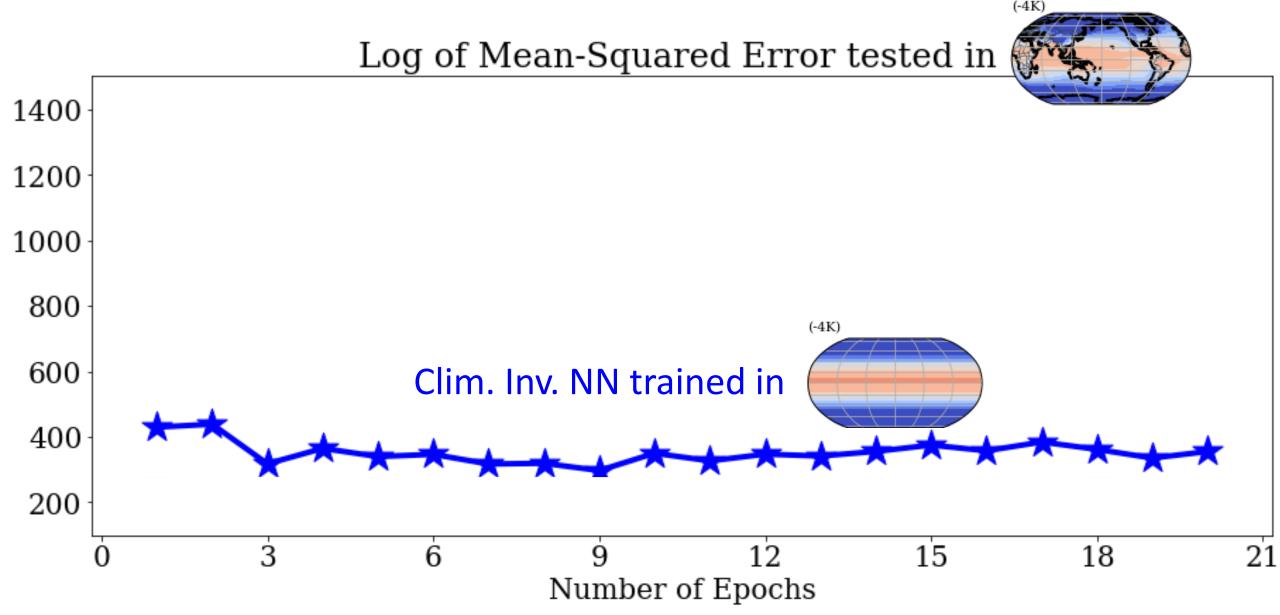
Heating tendency (W/m²)



Images: EUREC⁴A, NOAA



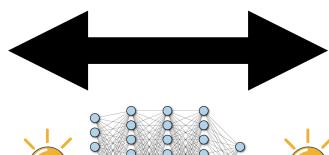
Climate-Invariant NNs learn transferable mappings



Outlook 2: Physics-informed ML may assist the data assimilation of sparse observations

Moistening tendency (W/m²)

Heating tendency (W/m²)



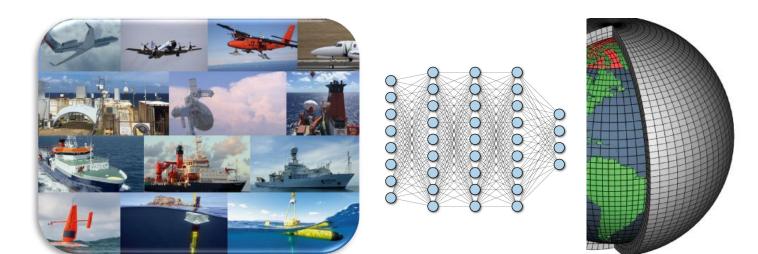
Global

Climate

Model

Atmospheric Physics can Help Machine Learning

- 1) Enforce physical constraints approx. (loss) or exactly (architecture)
- 2) Tailor ML interpretability methods for emulation of physical processes
- 3) Help NNs generalize by physically rescaling inputs & outputs
- 4) Rescaled ML learns more general mappings/facilitates transfer learning



Unil

UNIL | Université de Lausanne

Thank you

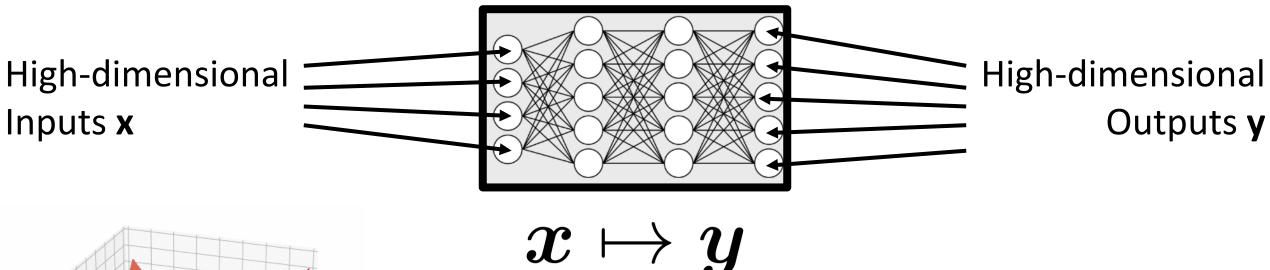
∂ata-∂riven Atmospheric & Water ∂yNamics

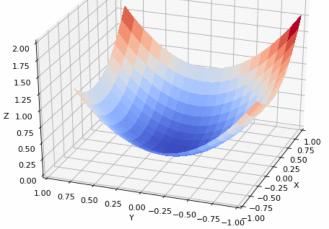
www.unil.ch/dawn tom.beucler@unil.ch

Bonus Slides

Summary

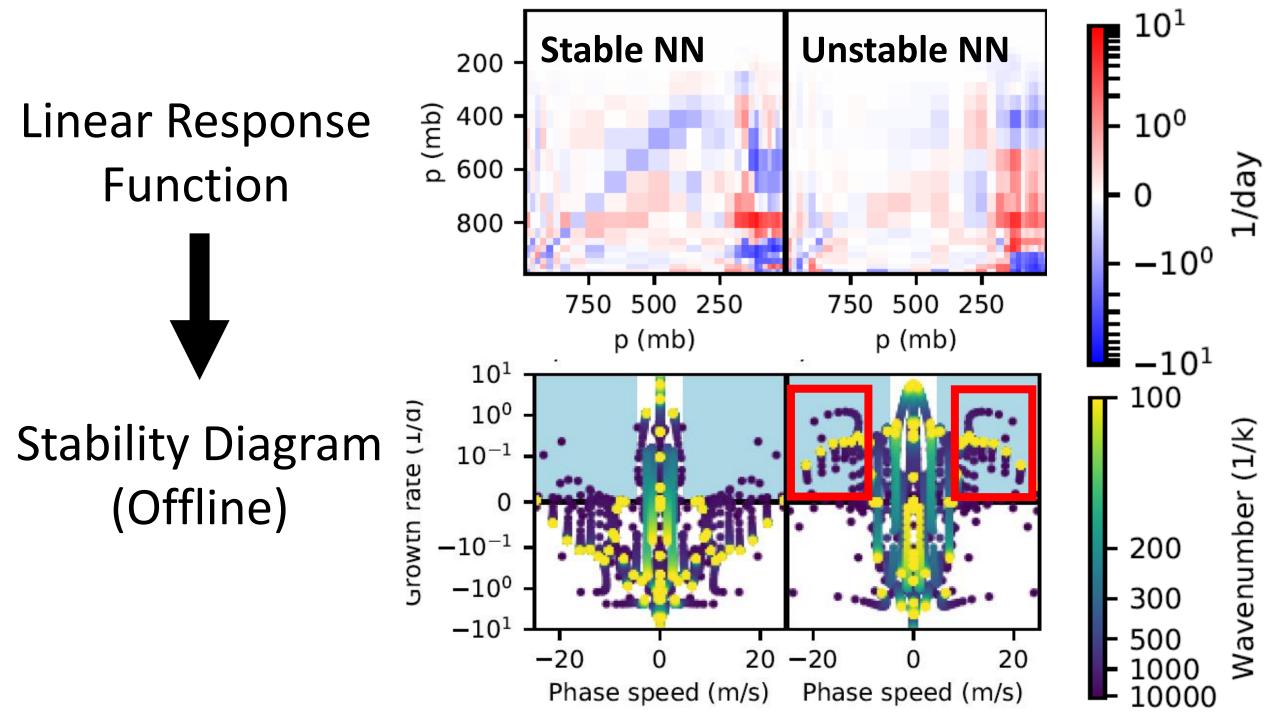
Neural Network = Non-linear regression tool





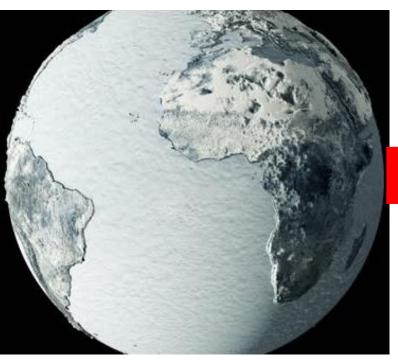
min Loss function
$$(y_{Predicted}, y_{Truth})$$

Image source: *Kathuria (Paperspace)*

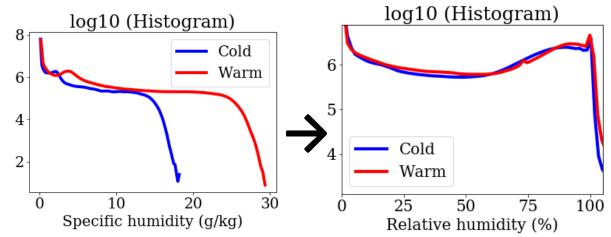


Training/Validation on cold aquaplanet simulation

Test on warm aquaplanet simulation

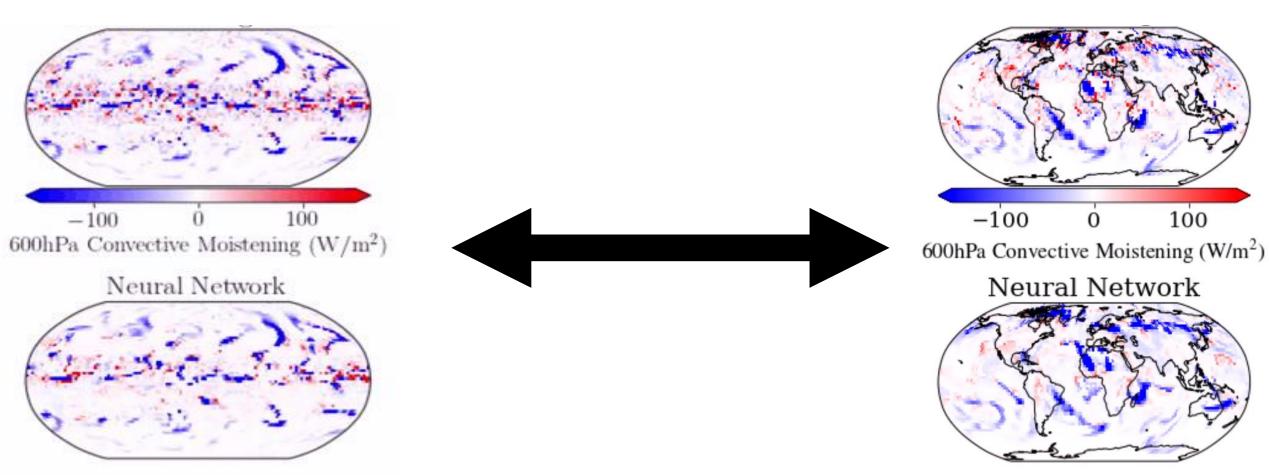


Climate-Invariant nets: Rescale inputs/outputs so that (extrapolation)→(interpolation)



Climate-Invariant neural networks:

- Learn more general mappings
- Facilitate transfer learning



100

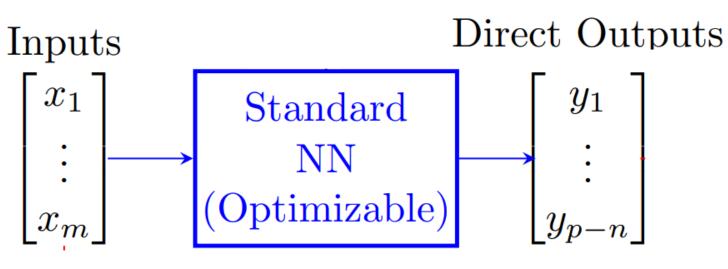
0

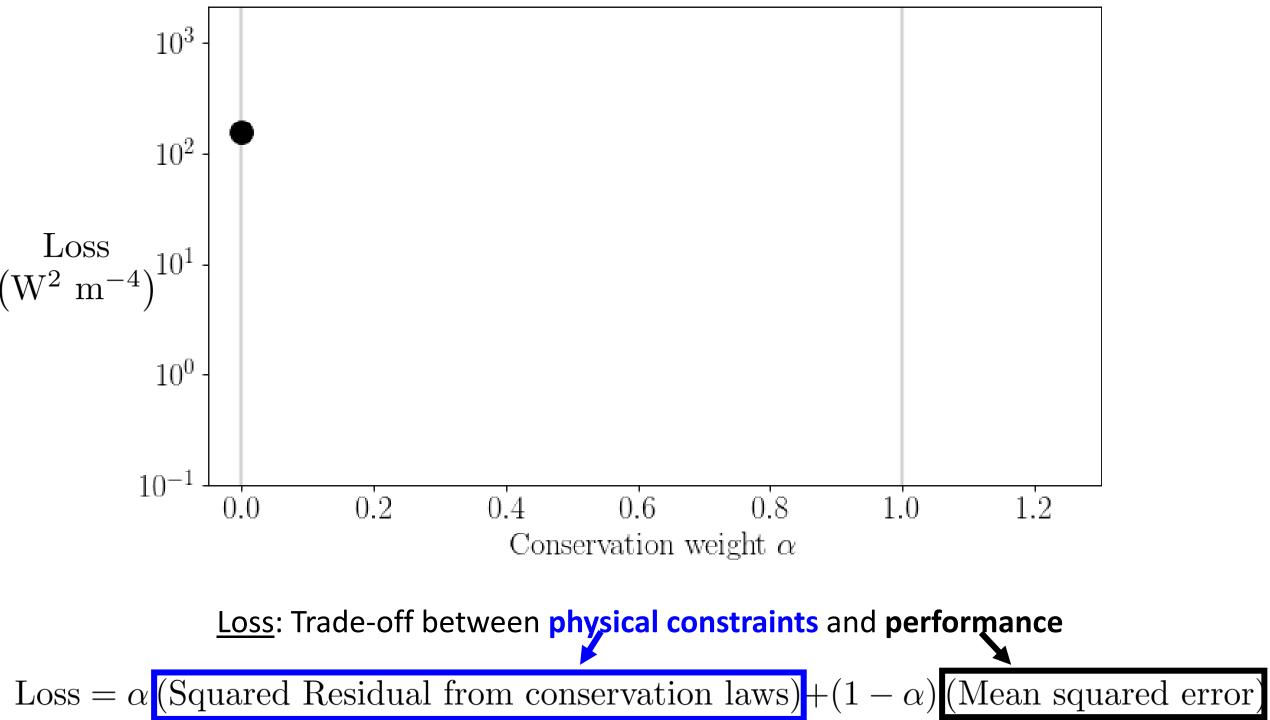
Soft Constraints (Loss) vs Hard Constraints (Architecture)

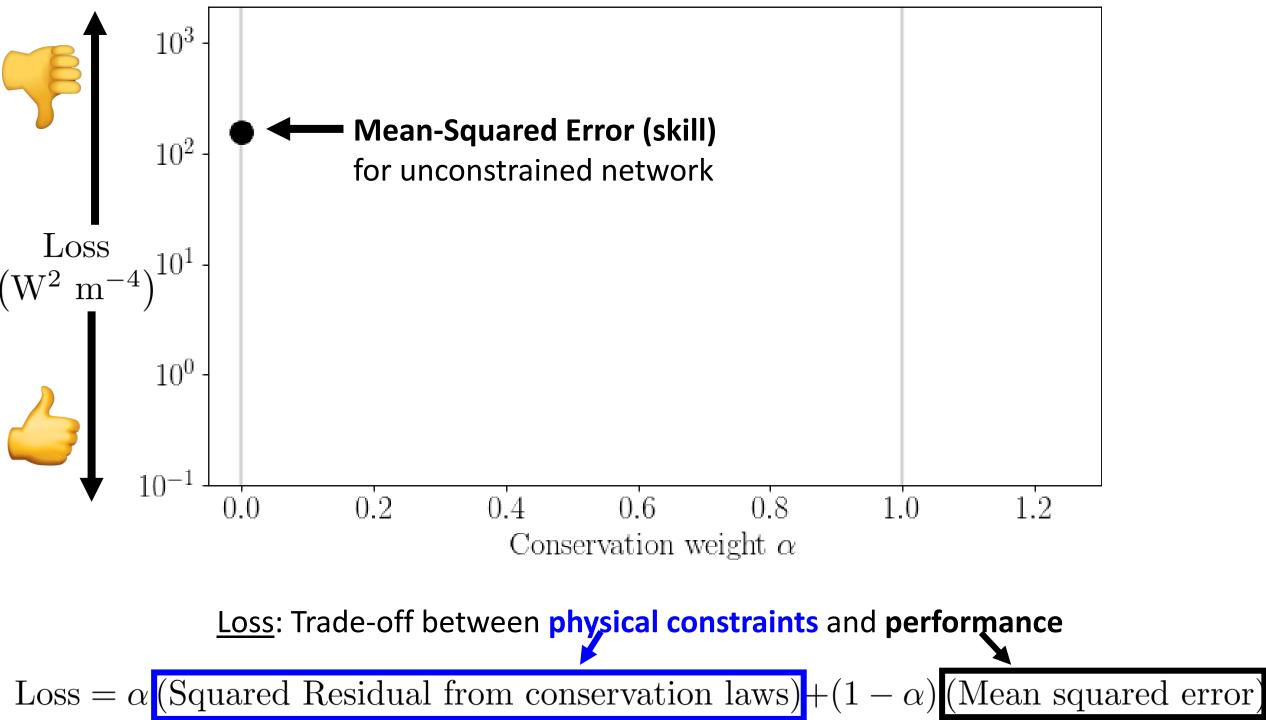
<u>Loss</u>: Introduce a penalty for violating conservation (\sim Lagrange multiplier):

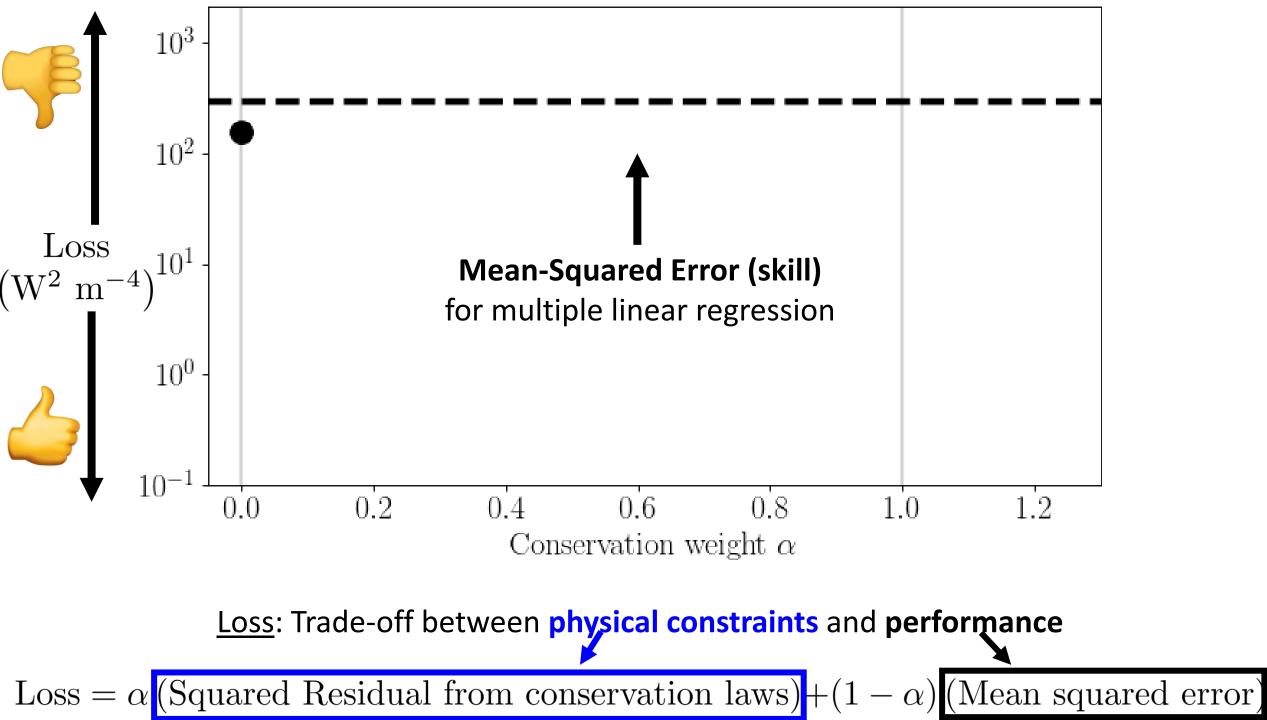
Loss = α (Squared Residual from conservation laws)+ $(1 - \alpha)$ (Mean squared error)

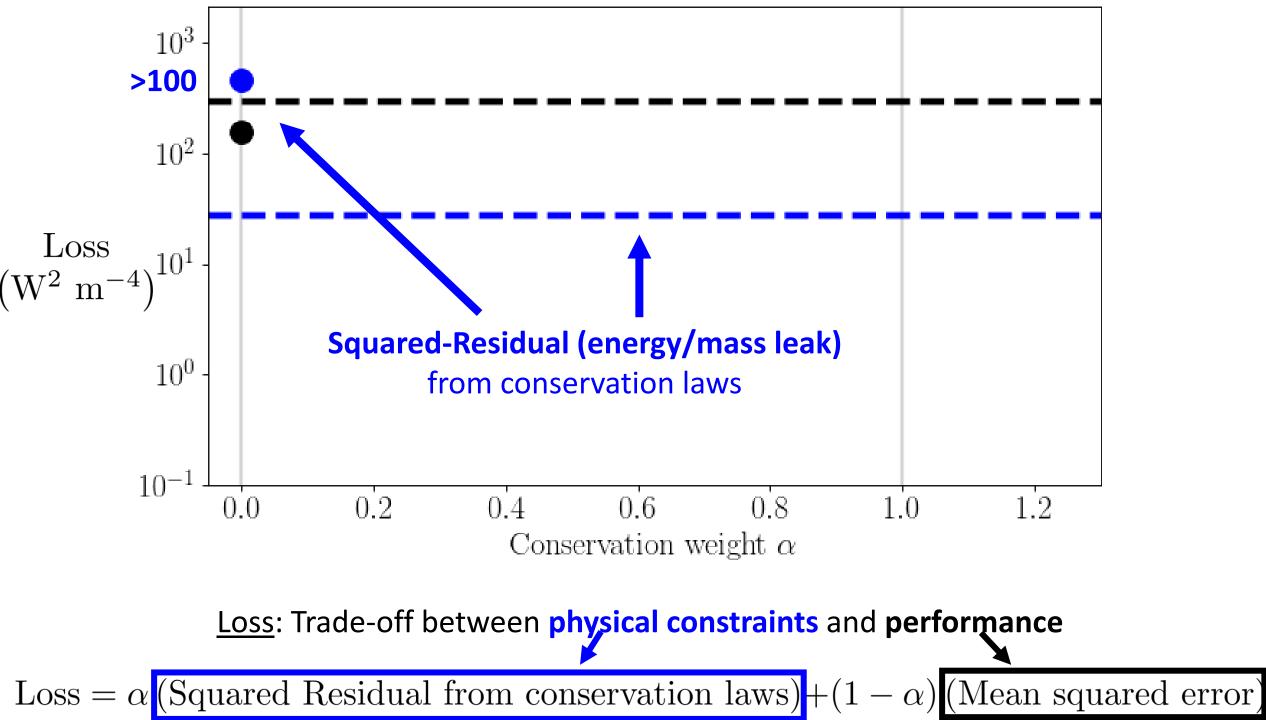
Architecture: Constraints layers to enforce conservation laws to machine precision

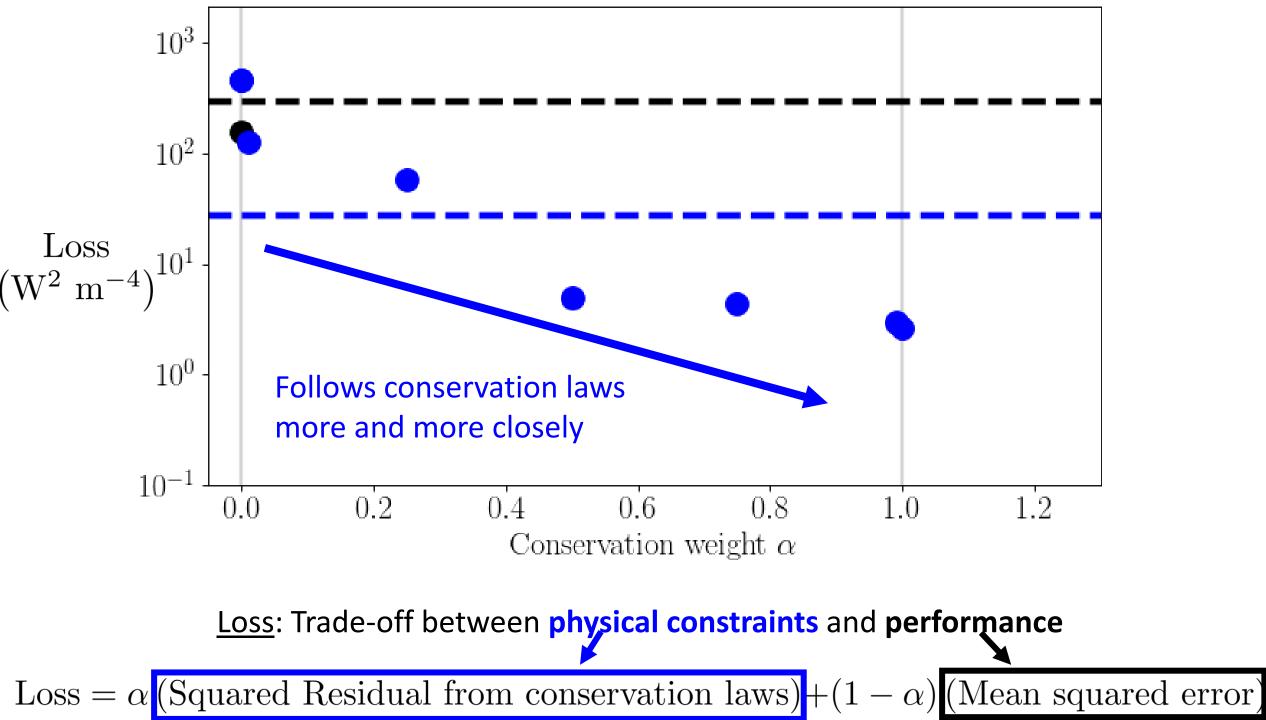


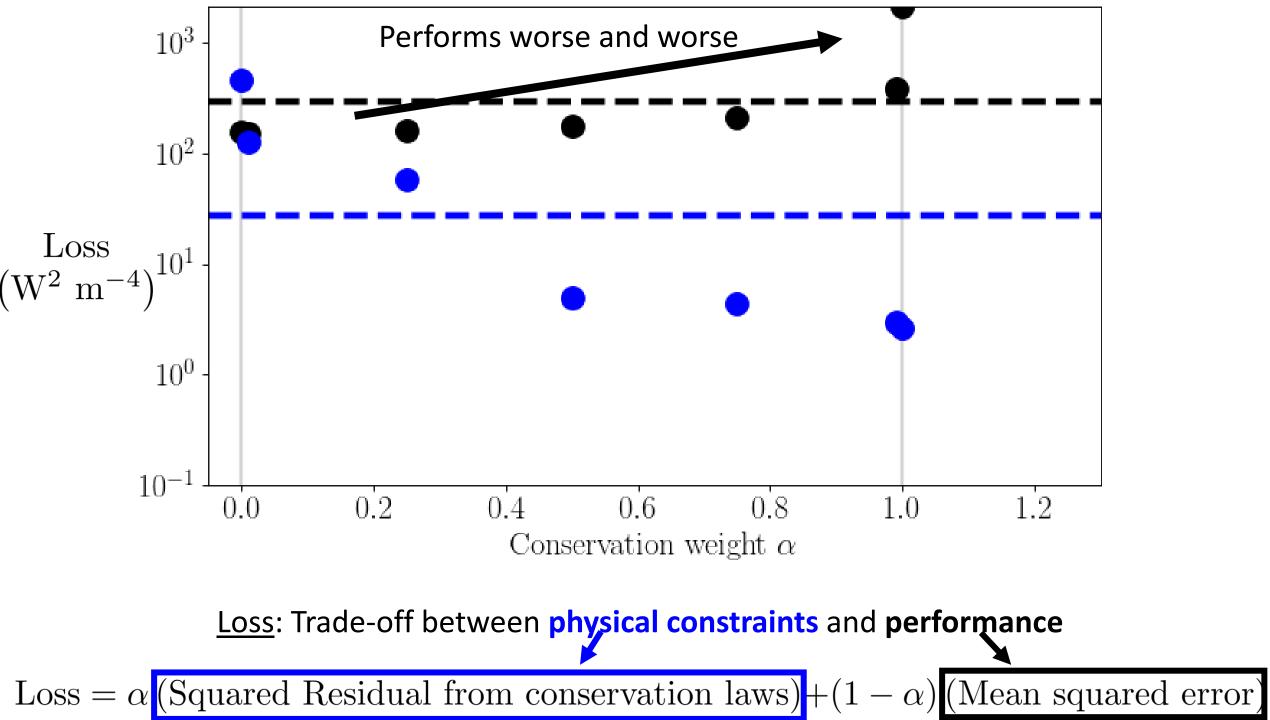


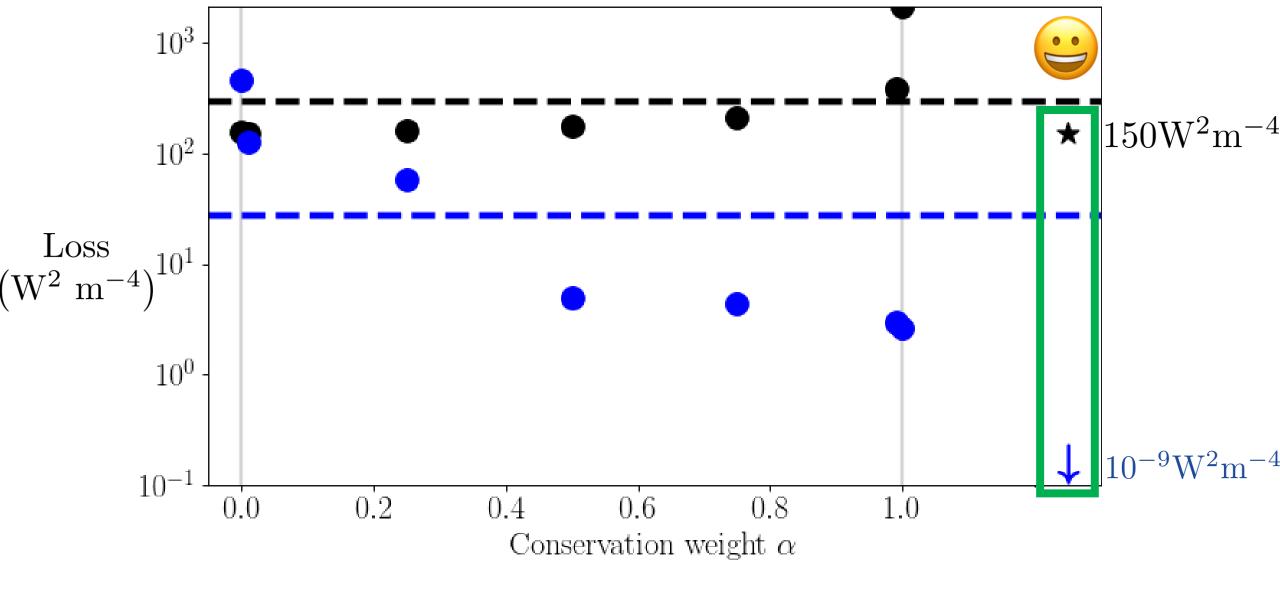






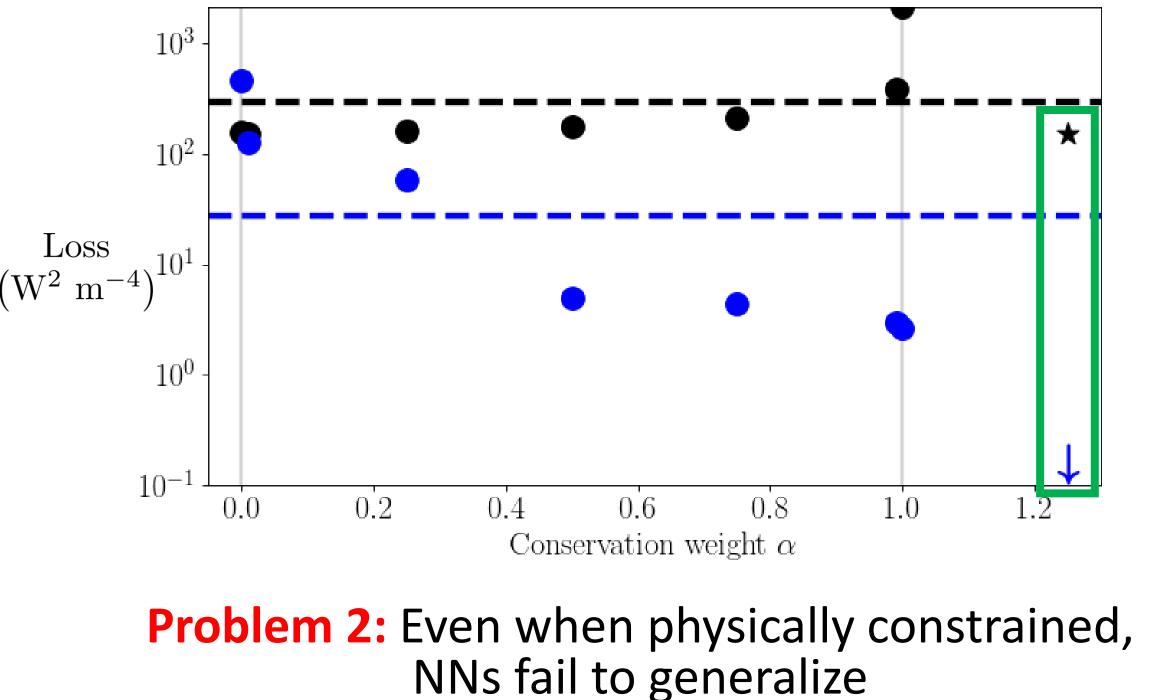




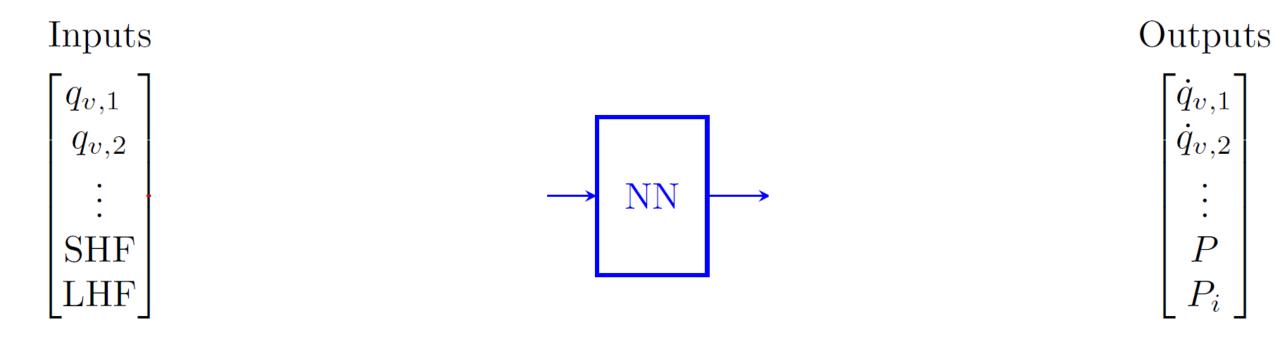


Loss: Trade-off between physical constraints and performance Architecture: Constraints enforced & competitive performance

See: Beucler et al. (2019)



Algorithms: Custom Data Generators/Layers



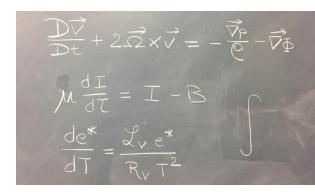
- Only one training/validation/test data despite multiple rescalings
- Test different rescalings quickly using multi-linear/logistic regressions
- Keep the rescalings that yield the best generalization

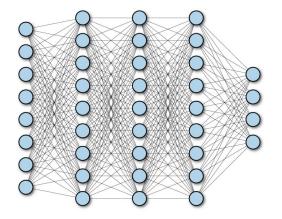
Start with clear link to climate impact/remote sensing

Link = Transfer Learning

Why Integrate Physics into ML/Stat Algorithms?

- Physical consistency (definitions, conservation laws...)
- Ability to generalize outside of the training set
- Interpretability
- Stability
- Data limitations





<u>Reviews</u>: Willard et al. (2020), Reichstein et al. (2019), Karpatne et al. (2017), Beucler et al. (2021)



Hypohydrostatic (SAM)

1.00

0.75

-0.50

-0.25

-0.00

-0.25

-1.00

 ${f R}^2$

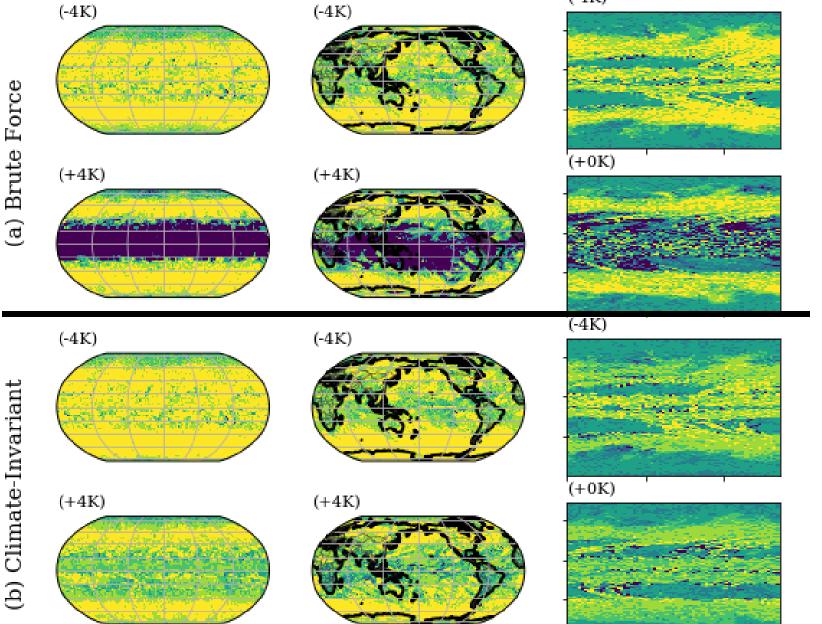
determination

<u>of</u>

-0.25 0 -0.50 0 -0.75 0

Aquaplanet (SPCAM3) Earth-like (SPCAM5)

(-4K)



500-hPa Subgrid Heating

Hypohydrostatic (SAM)

1.00

0.75

-0.50

-0.25

-0.00

-0.25

-1.00

-0.25) -0.50 U -0.75 O

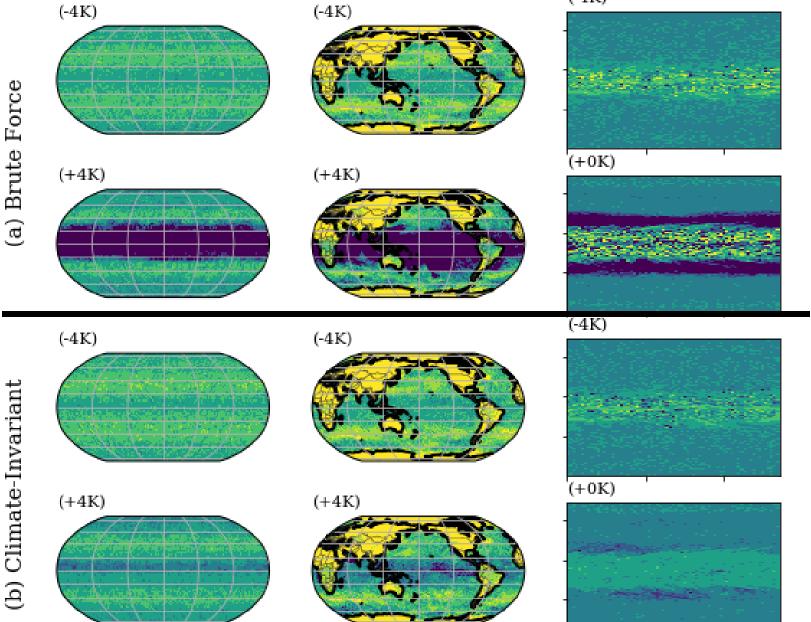
 ${f R}^2$

determination

<u>of</u>

Aquaplanet (SPCAM3) Earth-like (SPCAM5)

(-4K)



Near-surface Subgrid Heating

Aquaplanet (SPCAM3) Earth-like (SPCAM5) Hypohydrostatic (SAM)

