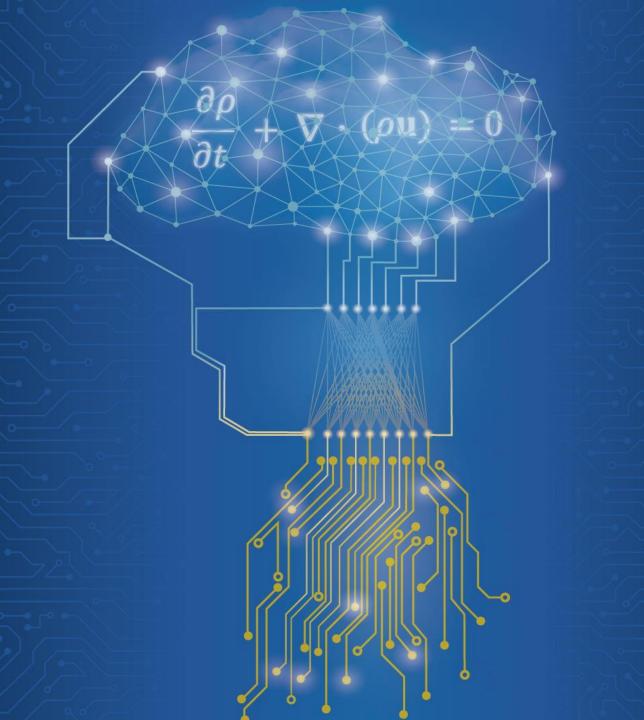
Atmospheric Physics-Guided Machine Learning

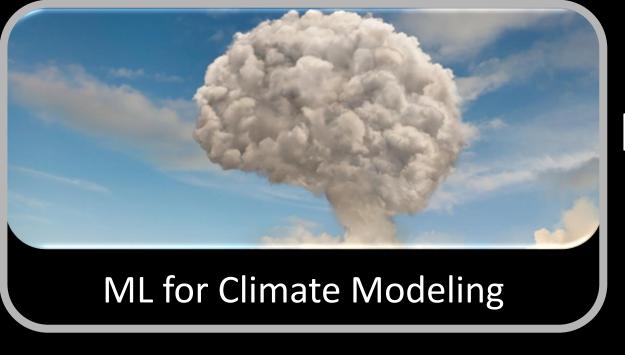
$\partial^3 AWN$

 ∂ ata- ∂ riven Atmospheric & Water ∂ yNamics

Presenter: Tom Beucler (UNIL)

M Pritchard (UCI), S Rasp (Clim. AI), P Gentine (Columbia), I Ebert (CSU), N Brenowitz (UW), J Yuval (MIT)...

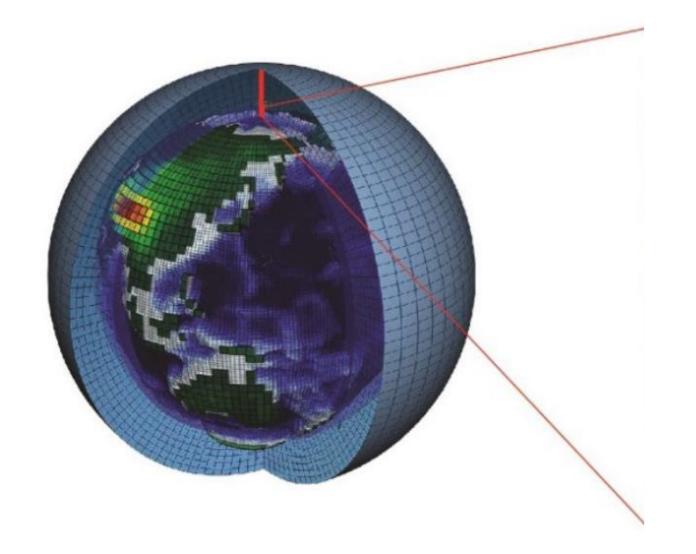




How to best combine ML & physical knowledge?

Towards Data-Driven and
Physically-Consistent
Models of Atmospheric Convection

Motivation 1: Largest uncertainties in climate projections from clouds

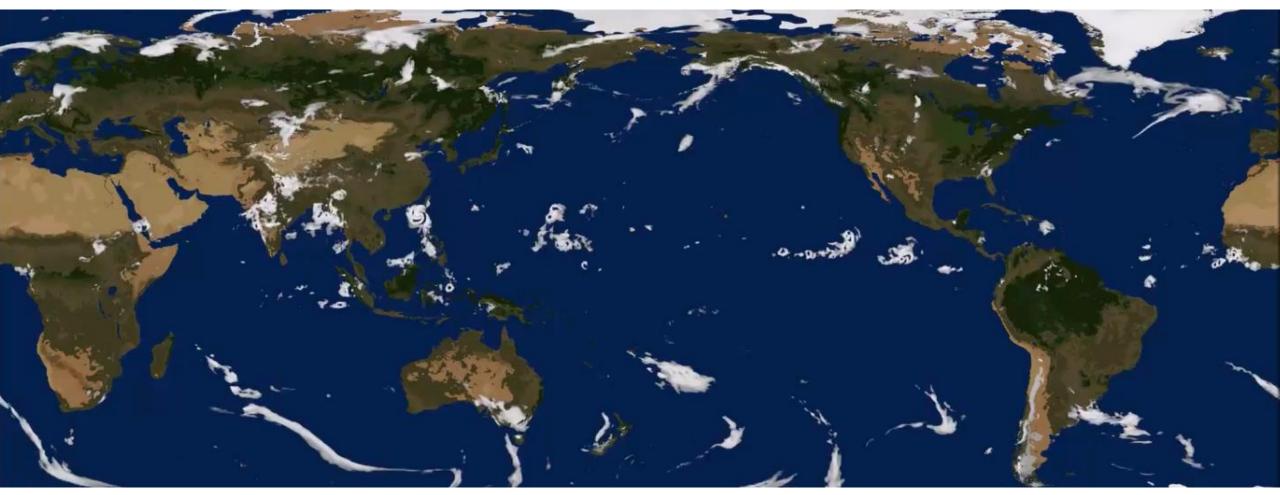


Goal

Source: Zelinka et al. (2020), Meehl et al. (In Review), Gentine, Eyring & Beucler (2020)

Motivation 1: Largest uncertainties in climate projections from clouds

Motivation 2: Global cloud-resolving models can resolve convection & clouds at \sim 1km, but only for short period (1 year)



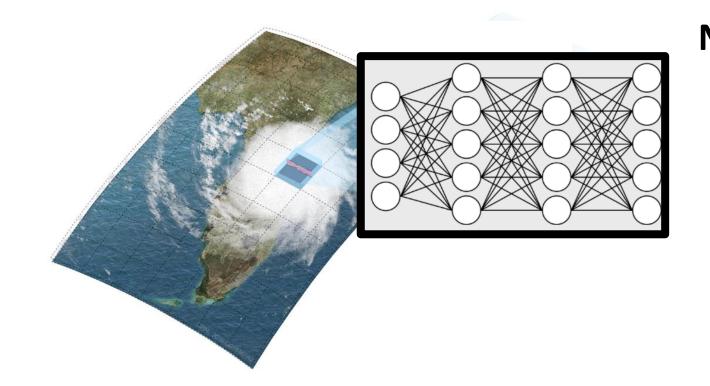
Source: Stevens et al. (2019), Sato et al. (2009), SAM: Khairoutdinov and Randall (2003), Lee and Khairoutdinov (2015)

Motivation 1: Largest uncertainties in climate projections from clouds

Motivation 2: Global cloud-resolving models can resolve convection & clouds at \sim 1km, but only for short period (1 year)

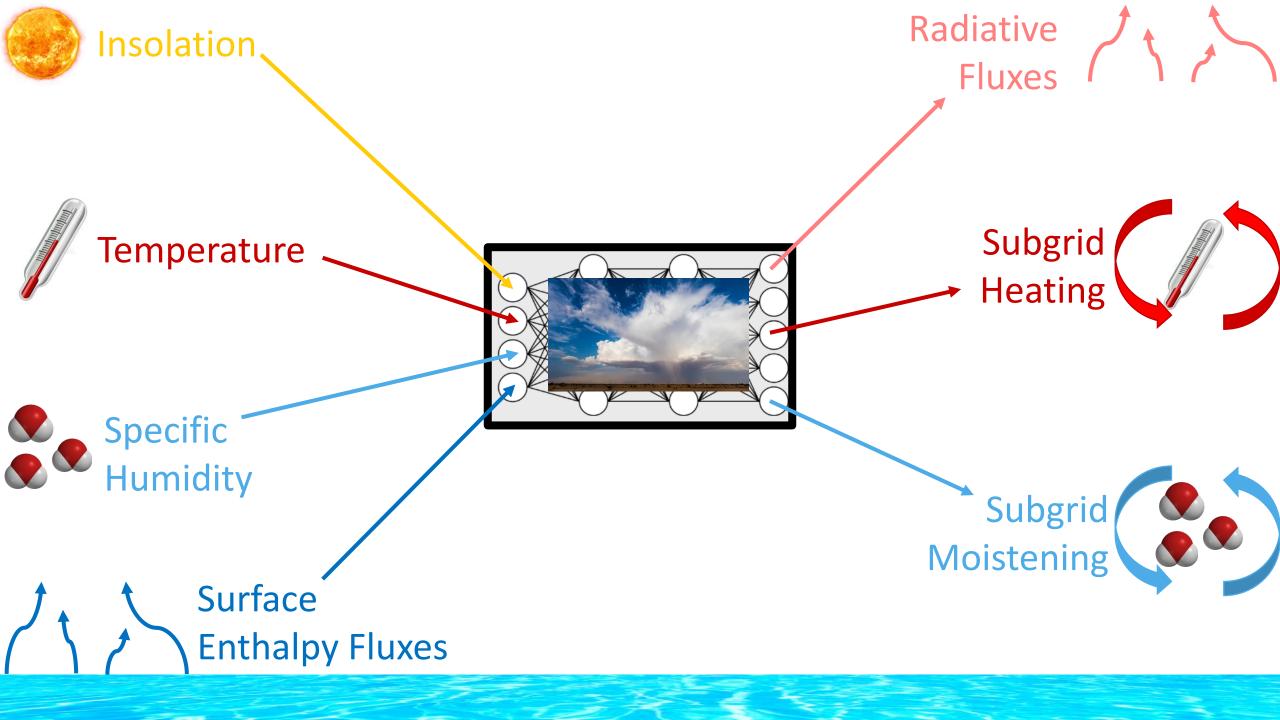
Motivation 3: ML can accurately mimic ~1km convective processes

ML of Subgrid-Scale Thermodynamics

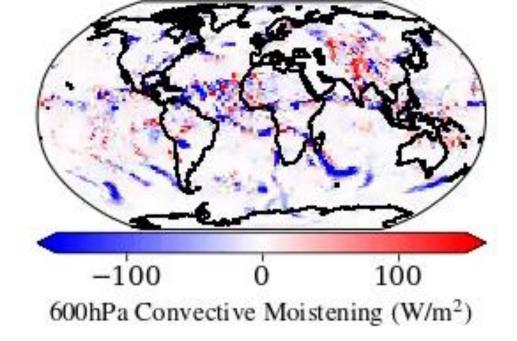


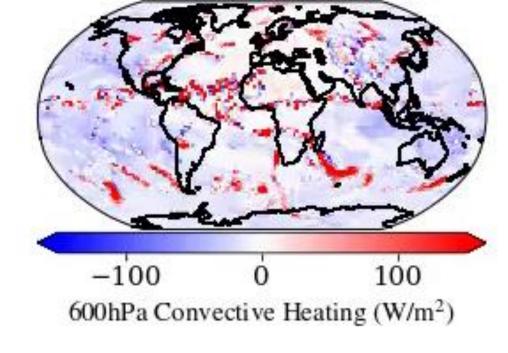
Neural Network: 20 times faster

<u>Setup</u>: Super-Parameterized climate model with prescribed surface temp. Year 1 for training (42M samples), Year 2 for validation/test

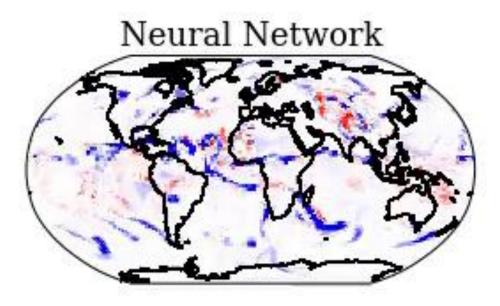


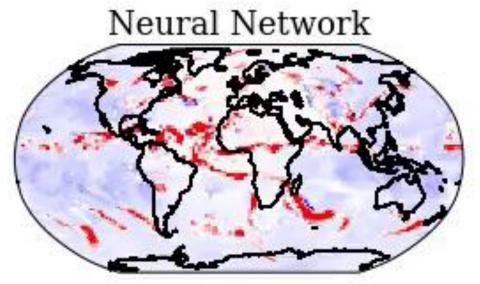
Truth
Super-param.
simulation





Prediction NN (offline)





Source: Mooers, Pritchard, Beucler et al. (2021)

<u>See</u>: Rasp et al. (2018), Brenowitz et al. (2018,2019), Gentine et al. (2018), Yuval et al. (2020), Krasnopolsky et al. (2013)

Can we eliminate physics entirely?

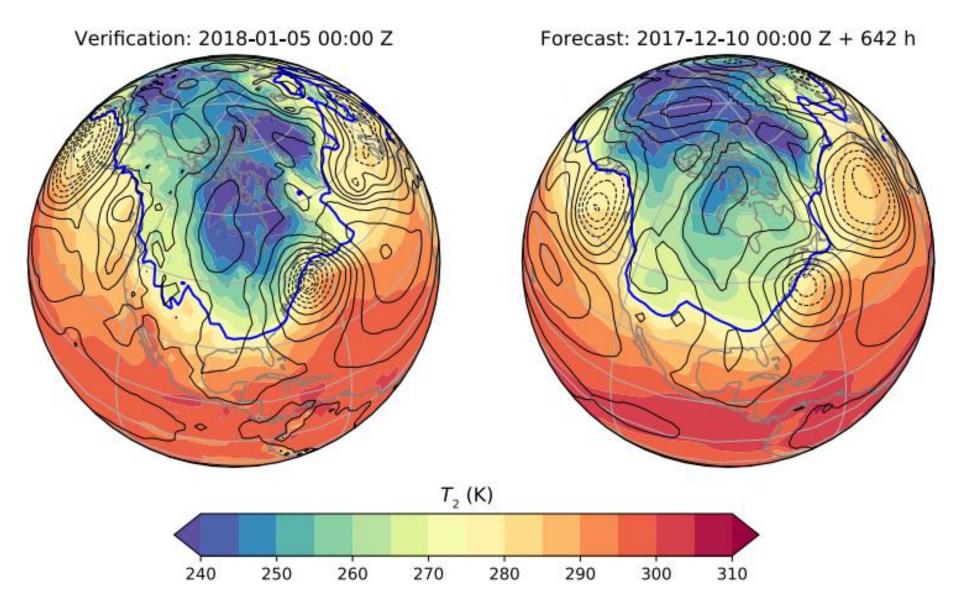


Image Source: Weyn et al. (2020), See also: Rasp et al. (2020)

Can we eliminate physics entirely?

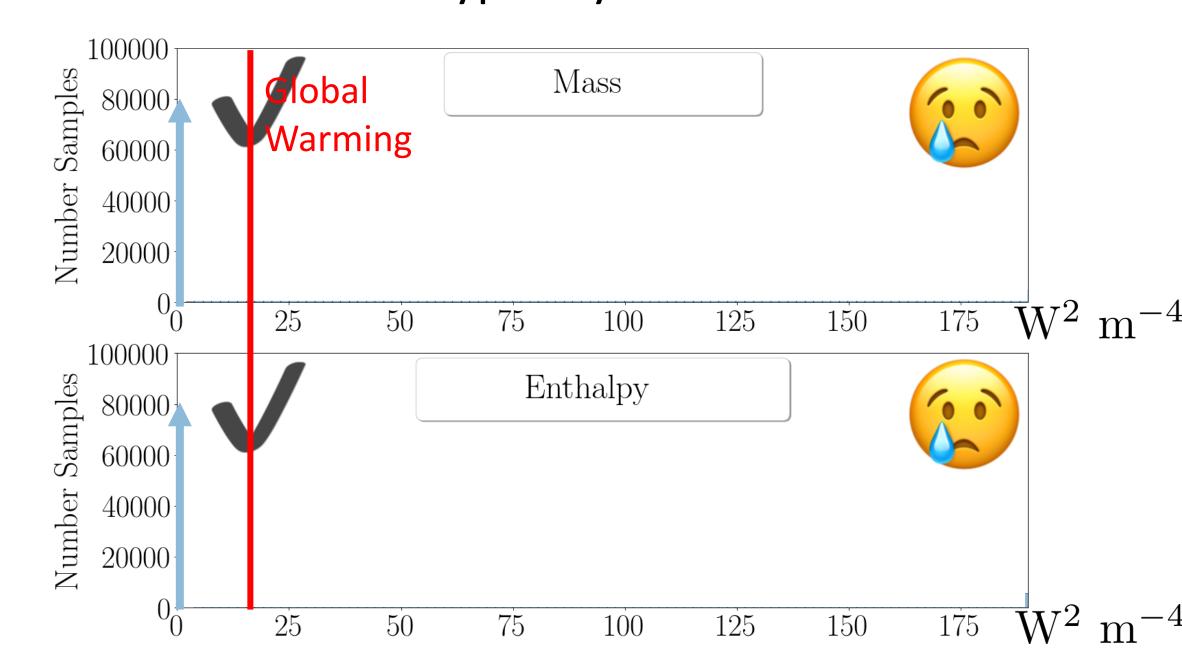
Maybe for meteorology Not for climate

Problem 1: ML algorithms violate conservation laws

Problem 2: ML parametrization hard to interpret/trust

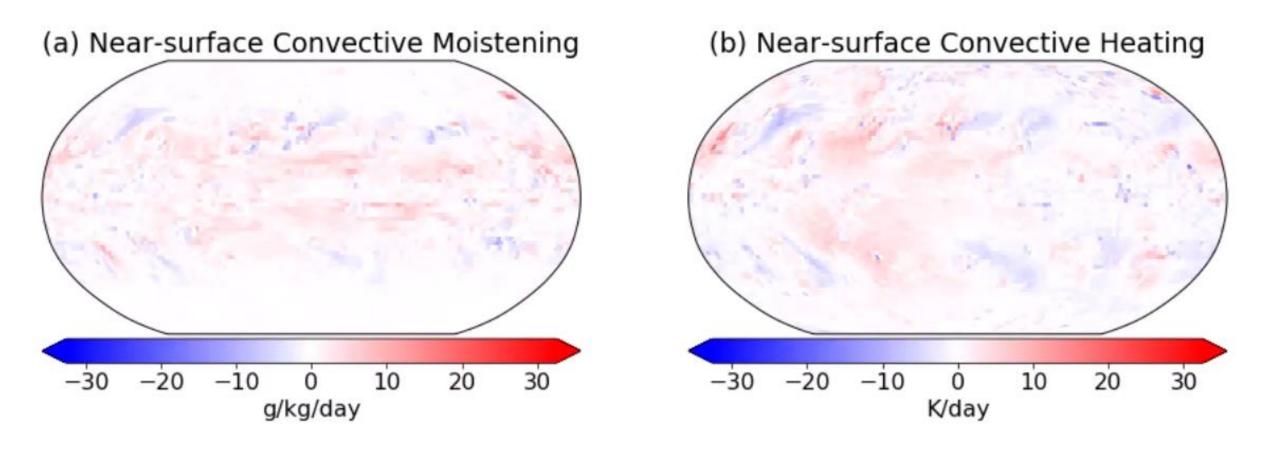
Problem 3: ML algorithms fail to generalize

Problem 1: Neural Nets typically violate conservation laws



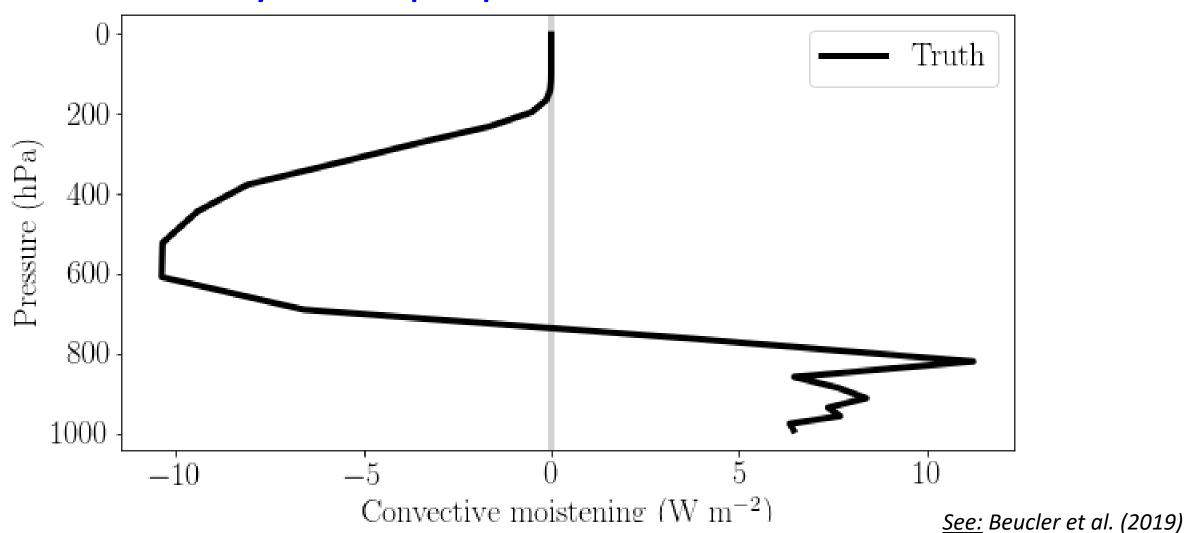
Problem 2: ML parametrizations are hard to interpret/trust

Time to Crash: 1.2day

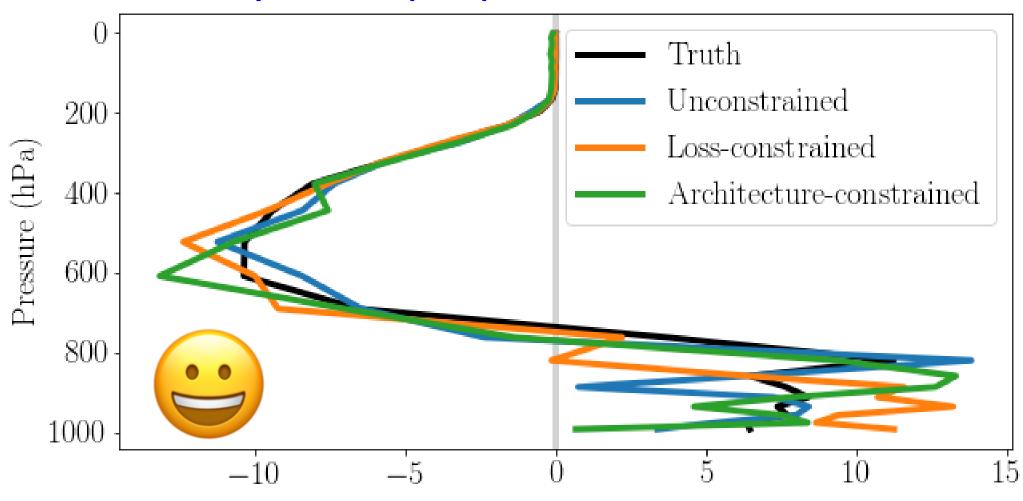


See: Brenowitz, Beucler et al. (2020)

Daily-mean Tropical prediction in reference climate



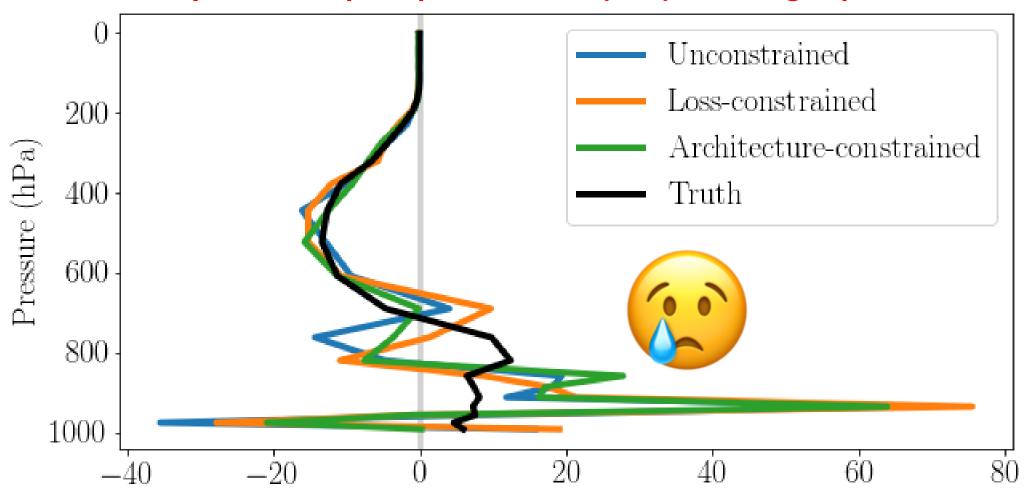
Daily-mean Tropical prediction in reference climate



Convective moistening (W m⁻²)

See: Beucler et al. (2019)

Daily-mean Tropical prediction in (+4K) warming experiment



Convective moistening (W m⁻²)

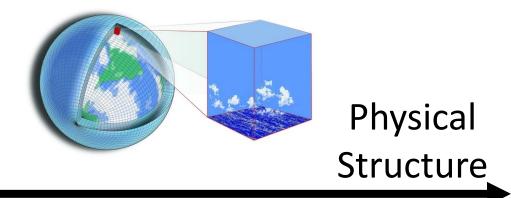
See: Beucler et al. (2019)

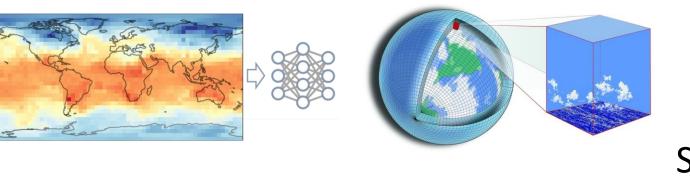
Problem 1: ML algorithms violate conservation lawsProblem 2: ML parametrization hard to interpret/trustProblem 3: ML algorithms fail to generalize

How can we design interpretable, physically-consistent & data-driven models of convection?

How to best combine ML & physical knowledge?

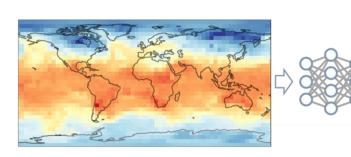
Physical Structure

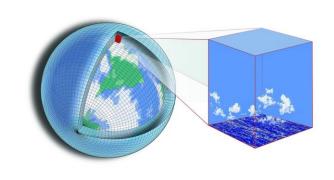




Physical Structure

Bias Correction of Physical Model



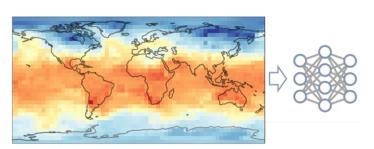


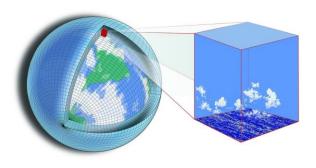
Physical Structure

Physics-Constrained Loss or Architecture

Bias Correction of Physical Model

Problem 1: Neural Nets typically violate conservation laws





Physical Structure

Physics-Constrained Loss or Architecture

Bias Correction of Physical Model

Physics-Constrained Loss Function

<u>Idea</u>: Introduce a penalty for violating conservation (\sim Lagrange multiplier):

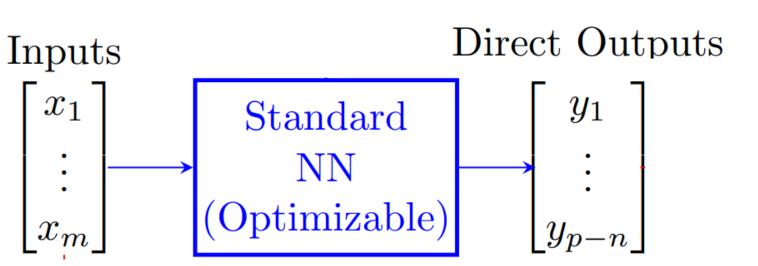
Loss = α (Squared Residual from conservation laws)+ $(1 - \alpha)$ (Mean squared error)

Physics-Constrained Architecture

<u>Idea</u>: Introduce a penalty for violating conservation (\sim Lagrange multiplier):

Loss = α (Squared Residual from conservation laws)+ $(1 - \alpha)$ (Mean squared error)

Constraint layers to enforce conservation laws to within machine precision!

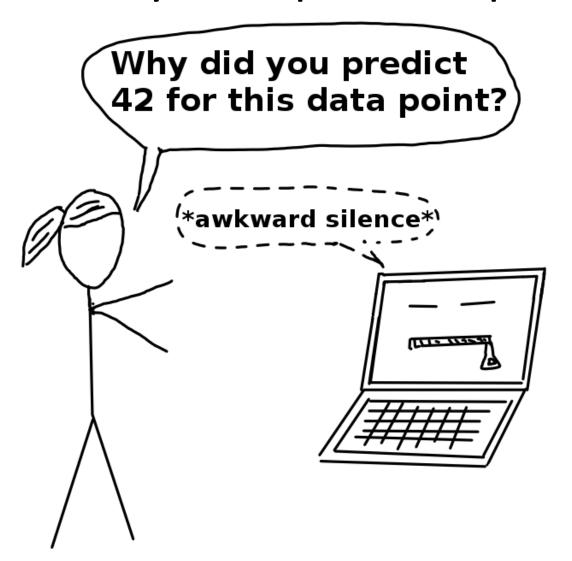


See: Beucler et al. (2021)

Problem 1: Neural Nets typically violate conservation laws

We can enforce conservation laws in NNs Conservation of mass, energy, and radiation

Problem 2: For climate modeling, we need trustworthy/interpretable parametrizations

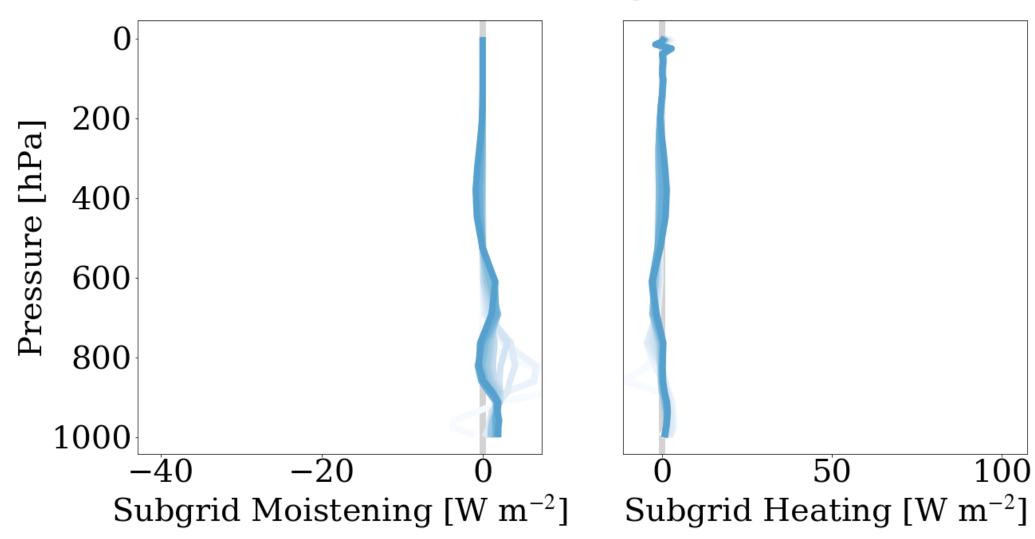


Problem 2: ML parametrizations are hard to interpret/trust

<u>Idea</u>: Tailor 2 NN interpretability methods to parameterization convection

Partial Dependence Plots confirm that at fixed l.t. stability, mid-tropospheric moisture fuels convection

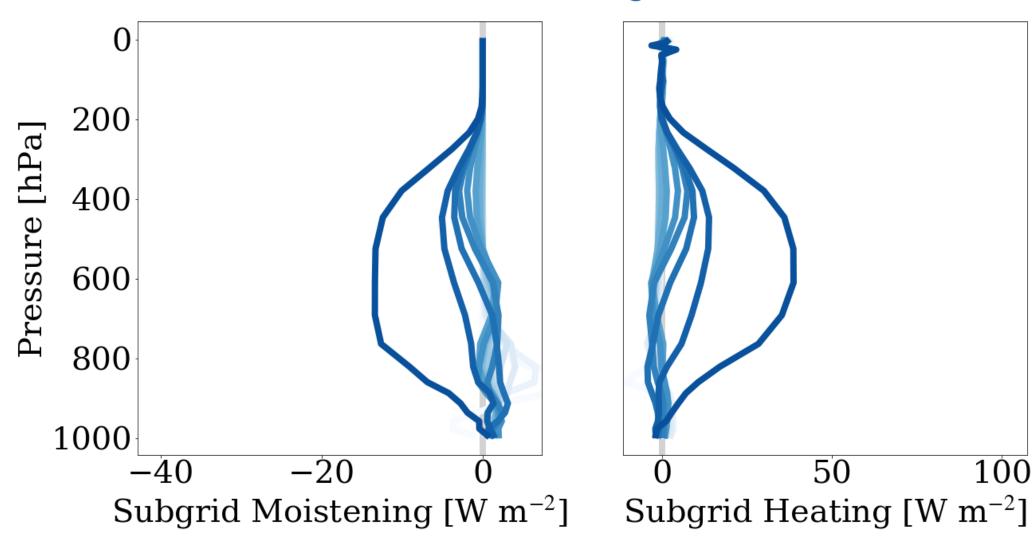
 $QM = 20.0 kg/m^2$



<u>See</u>: Brenowitz, Beucler et al. (2020)

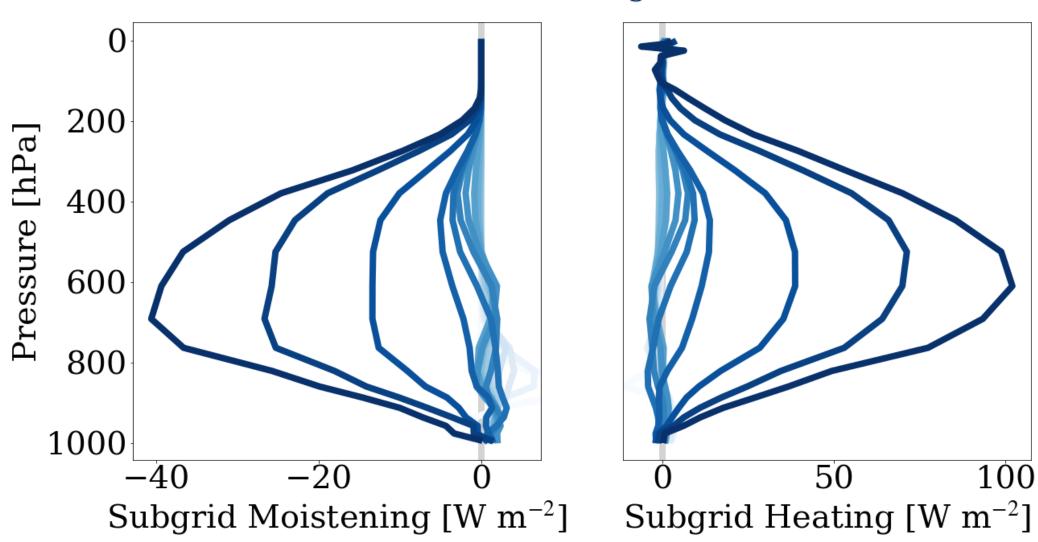
Partial Dependence Plots confirm that at fixed l.t. stability, mid-tropospheric moisture fuels convection

 $QM = 30.5 kg/m^2$



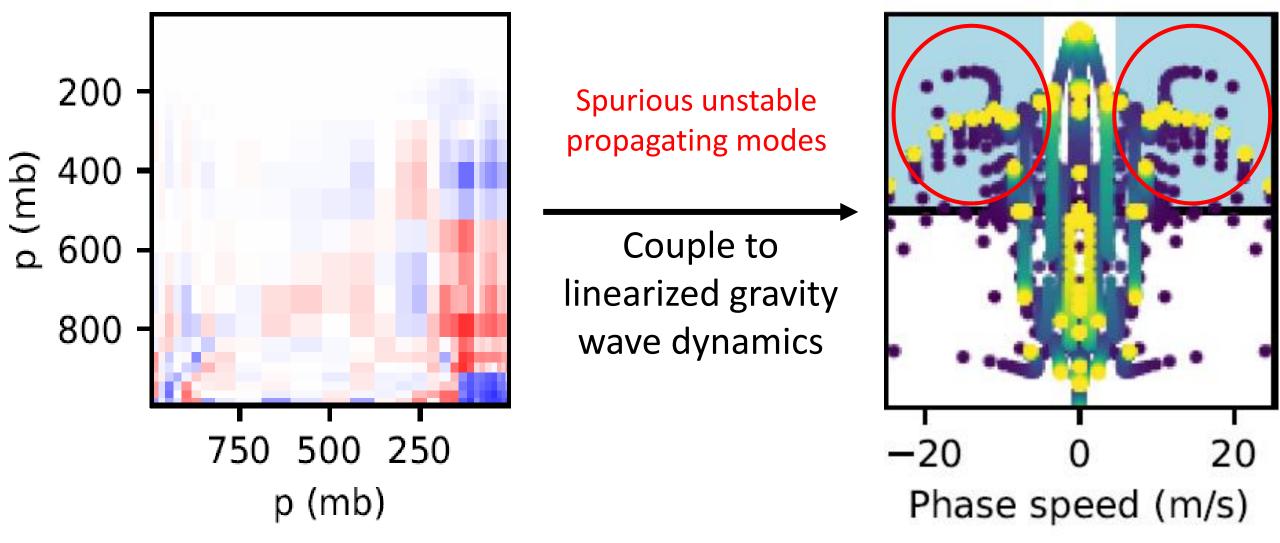
<u>See</u>: Brenowitz, Beucler et al. (2020)

Partial Dependence Plots confirm that at fixed l.t. stability, mid-tropospheric moisture fuels convection $QM = 34.7 \text{kg/m}^2$



<u>See</u>: Brenowitz, Beucler et al. (2020)

Jacobian calculated via automatic differentiation helps interpret and stabilize parameterization



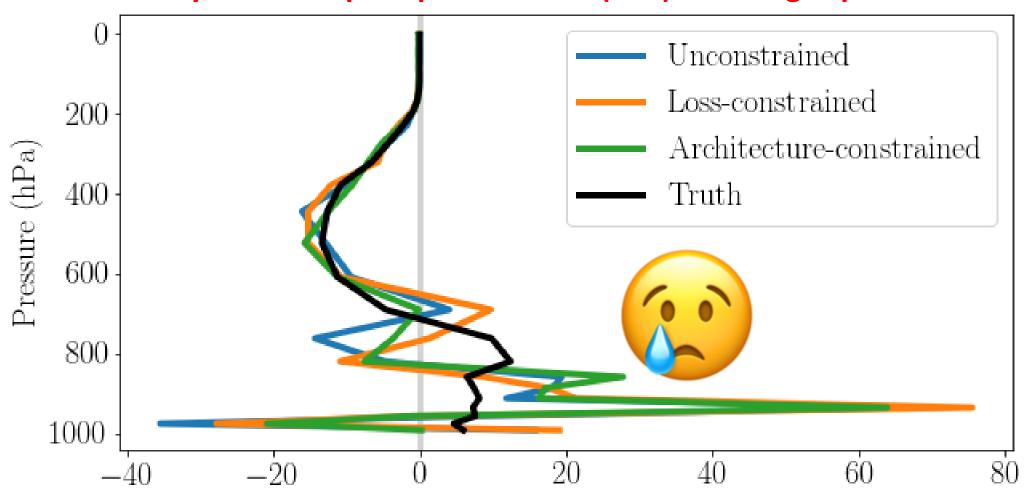
<u>See</u>: Kuang (2018, 2007), Herman and Kuang (2013), Beucler et al. (2018), **Brenowitz, Beucler et al. (2020)**

Problem 2: ML parametrizations are hard to interpret/trust

We can tailor interpretability methods Partial Dependence Plots + Gradients

Also applies to Attribution Maps

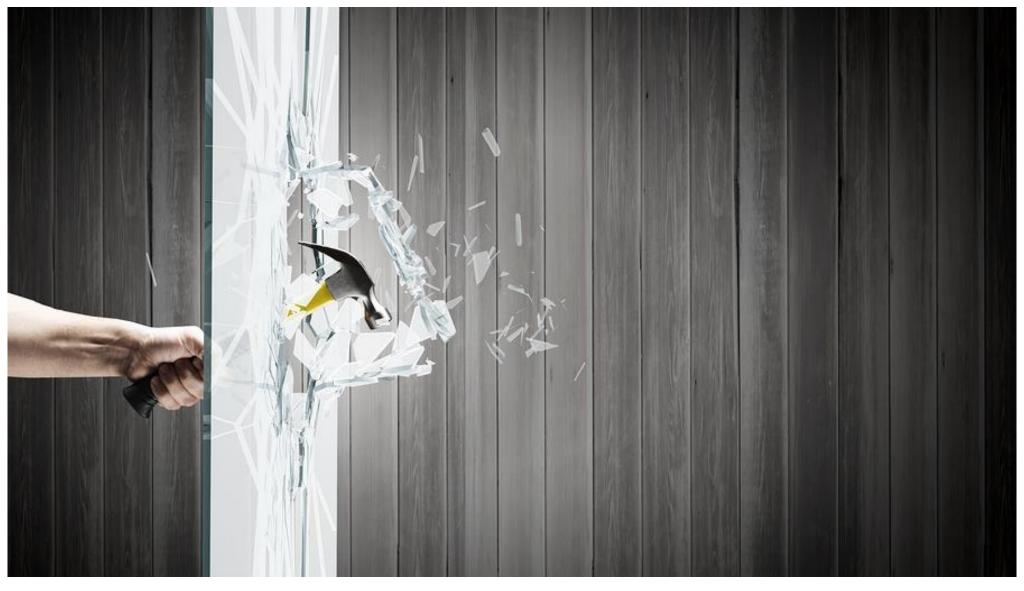
Daily-mean Tropical prediction in (+4K) warming experiment



Convective moistening (W m⁻²)

See: Beucler et al. (2019)

Idea: Break the model even more!



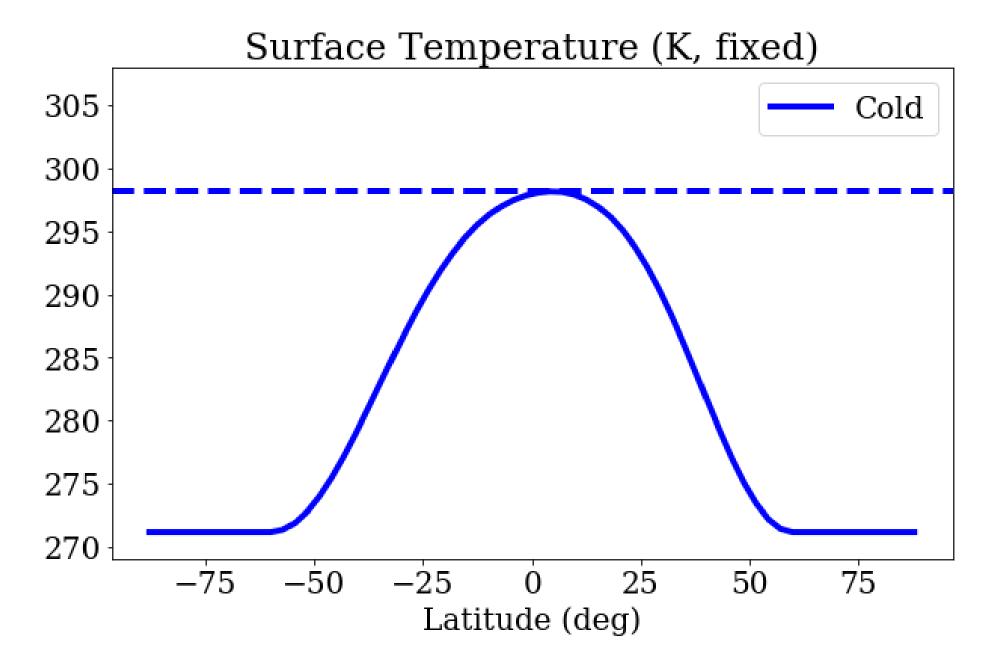
Generalization Experiment: Uniform +8K warming

Training and Validation on cold aquaplanet simulation

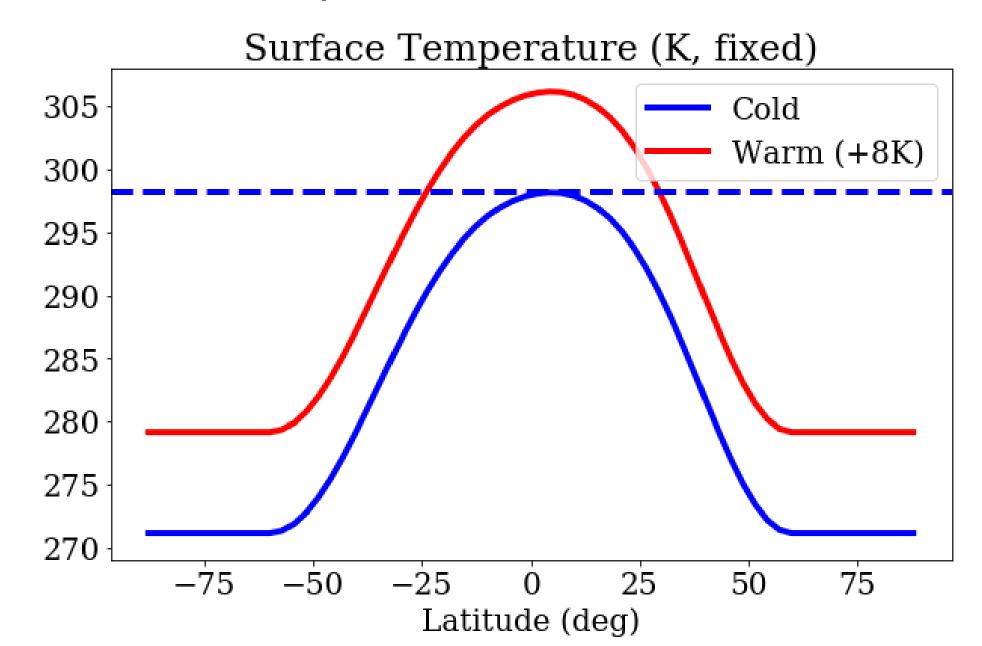
Test on warm aquaplanet simulation

<u>Images</u>: Rashevskyi Viacheslav, Sebastien Decoret

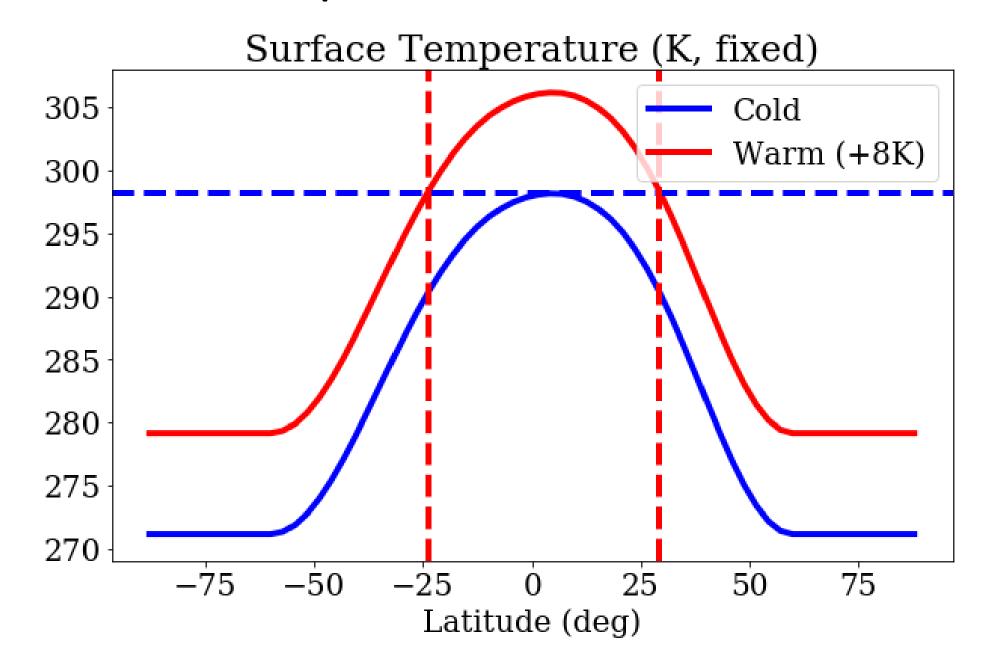
Generalization Experiment: Uniform +8K warming



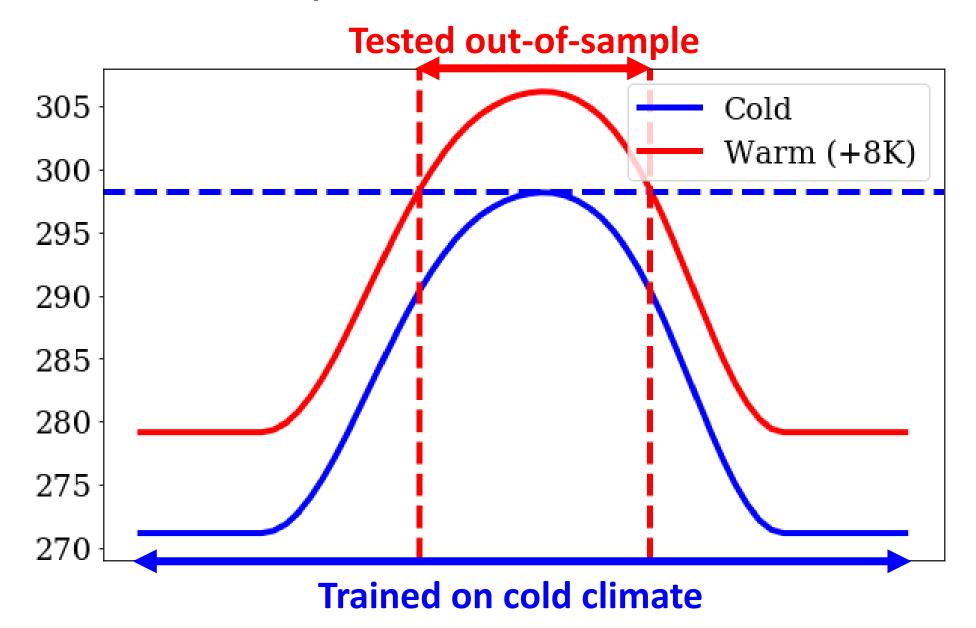
Generalization Experiment: Uniform +8K warming



Generalization Experiment: Uniform +8K warming

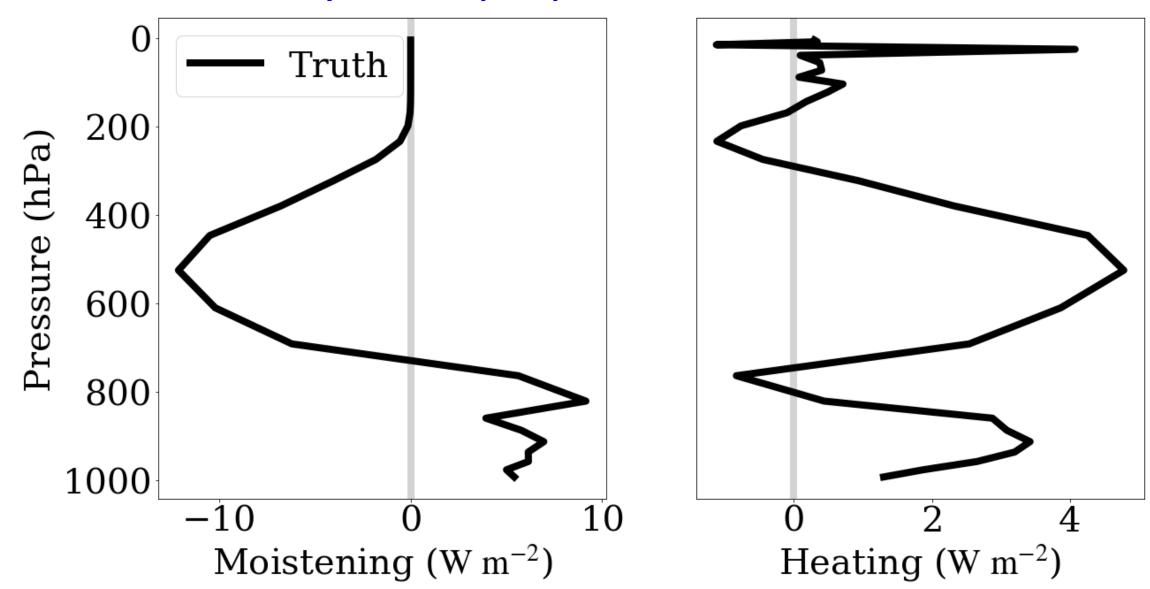


Generalization Experiment: Uniform +8K warming



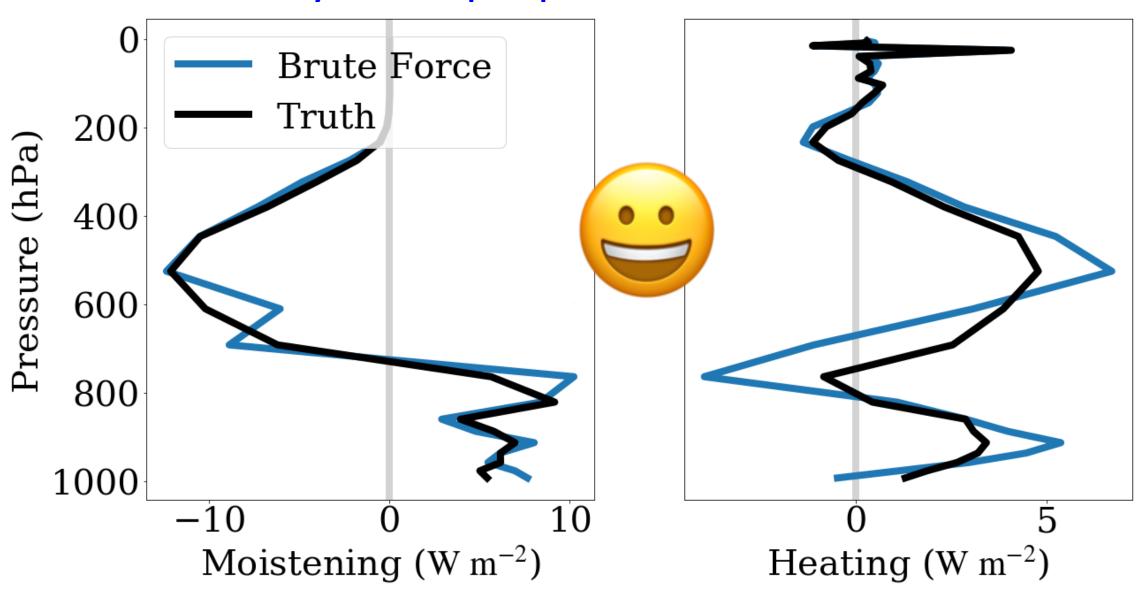
Problem 3: NNs fail to generalize to unseen climates

Daily-mean Tropical prediction in cold climate

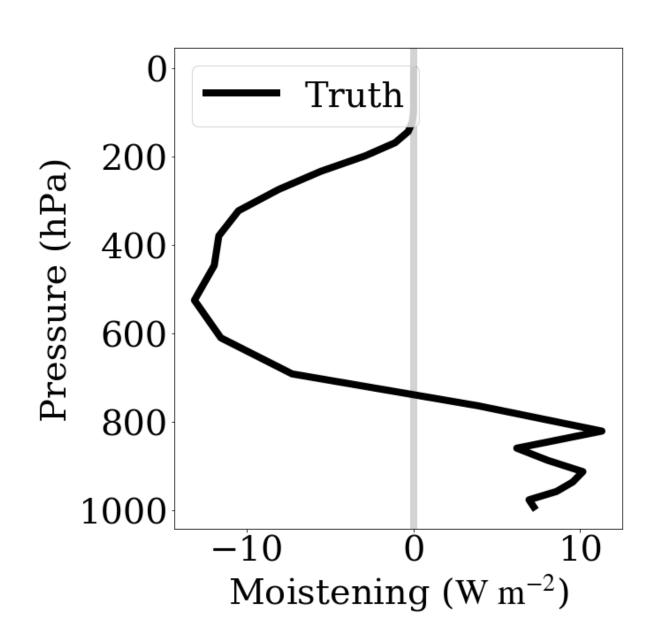


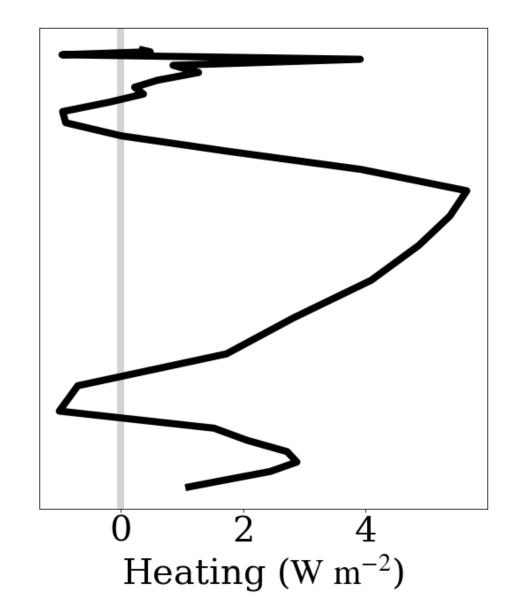
Problem 3: NNs fail to generalize to unseen climates

Daily-mean Tropical prediction in cold climate

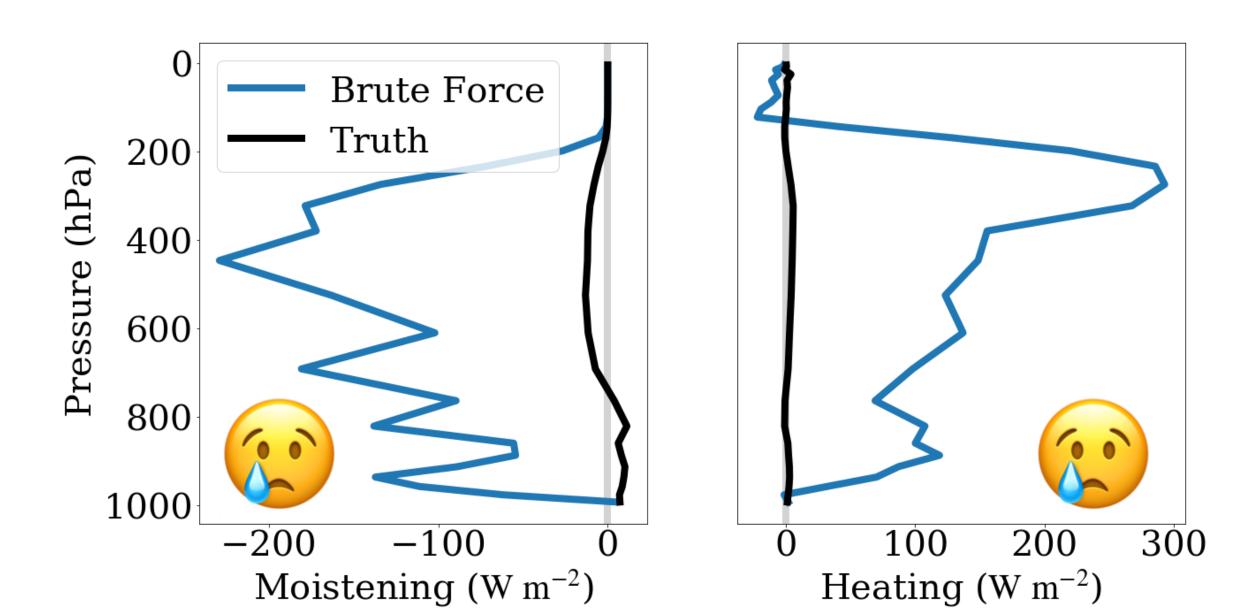


Daily-mean Tropical prediction in warm climate





Daily-mean Tropical prediction in warm climate



Physically rescale the data to convert extrapolation into interpolation

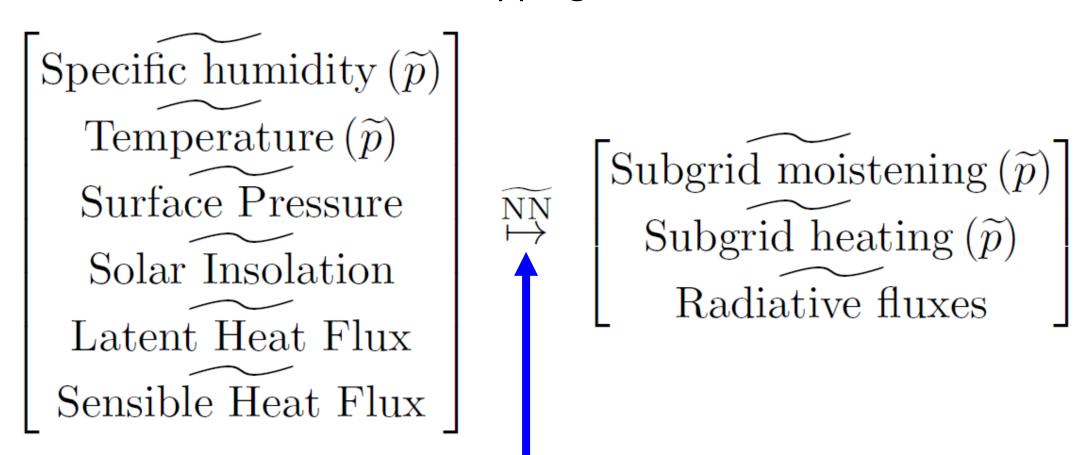
Specific humidity (p)Temperature (p)Surface Pressure Solar Insolation Latent Heat Flux Sensible Heat Flux

NN → Subgrid moistening (p)Subgrid heating (p)Radiative fluxes

Brute Force: Not Climate-Invariant

Physically rescale the data to convert extrapolation into interpolation

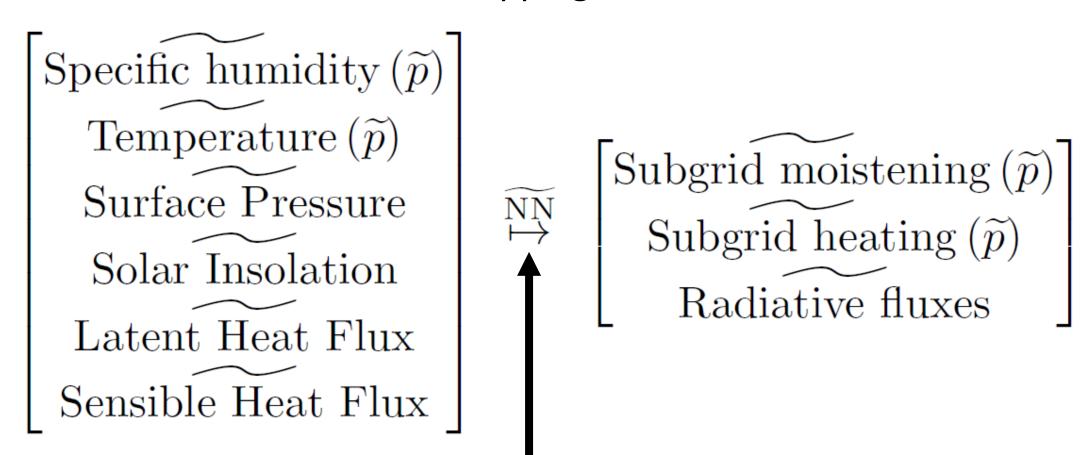
Goal: Uncover climate-invariant mapping from climate to convection



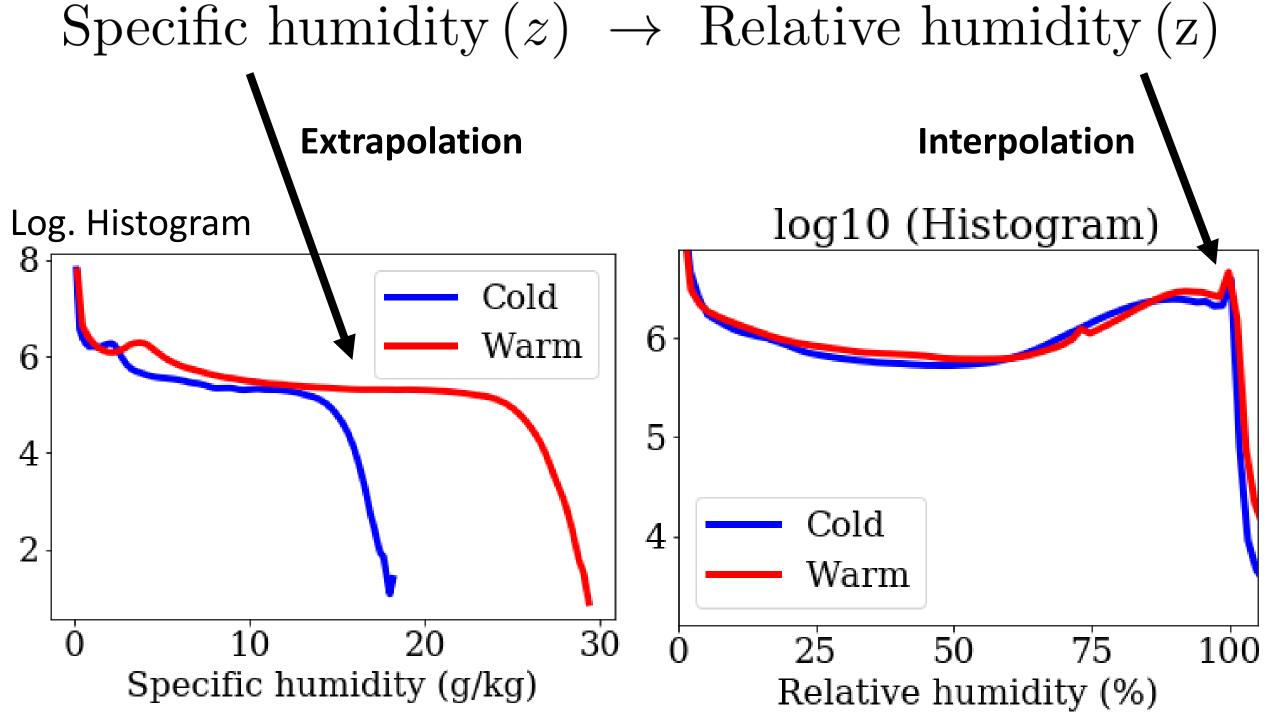
Goal: Climate-Invariant

Physically rescale the data to convert extrapolation into interpolation

Goal: Uncover climate-invariant mapping from climate to convection

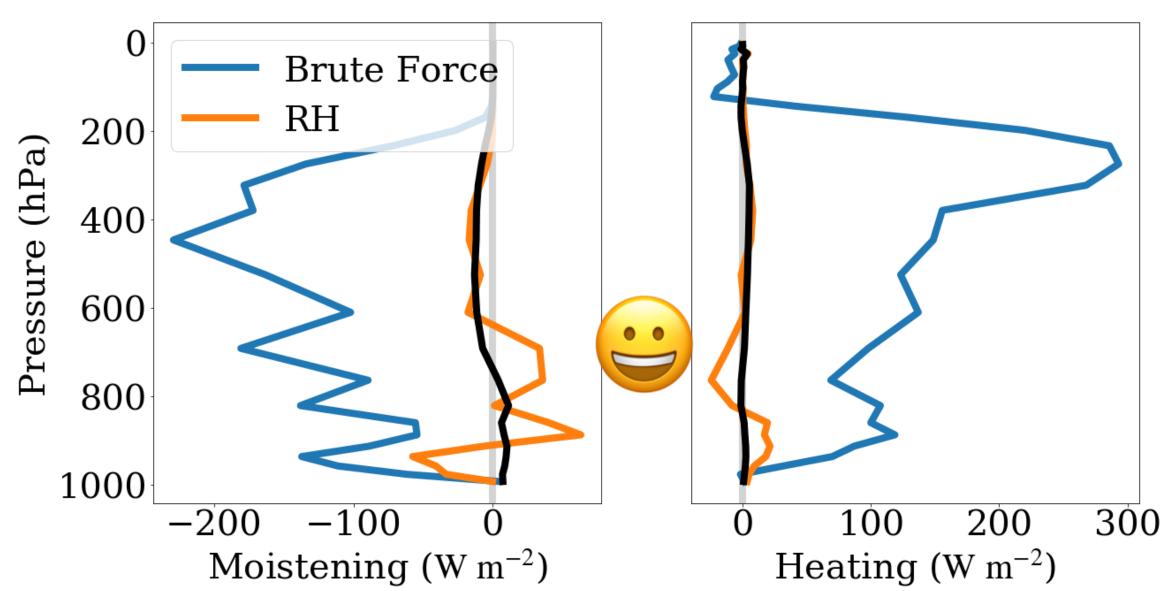


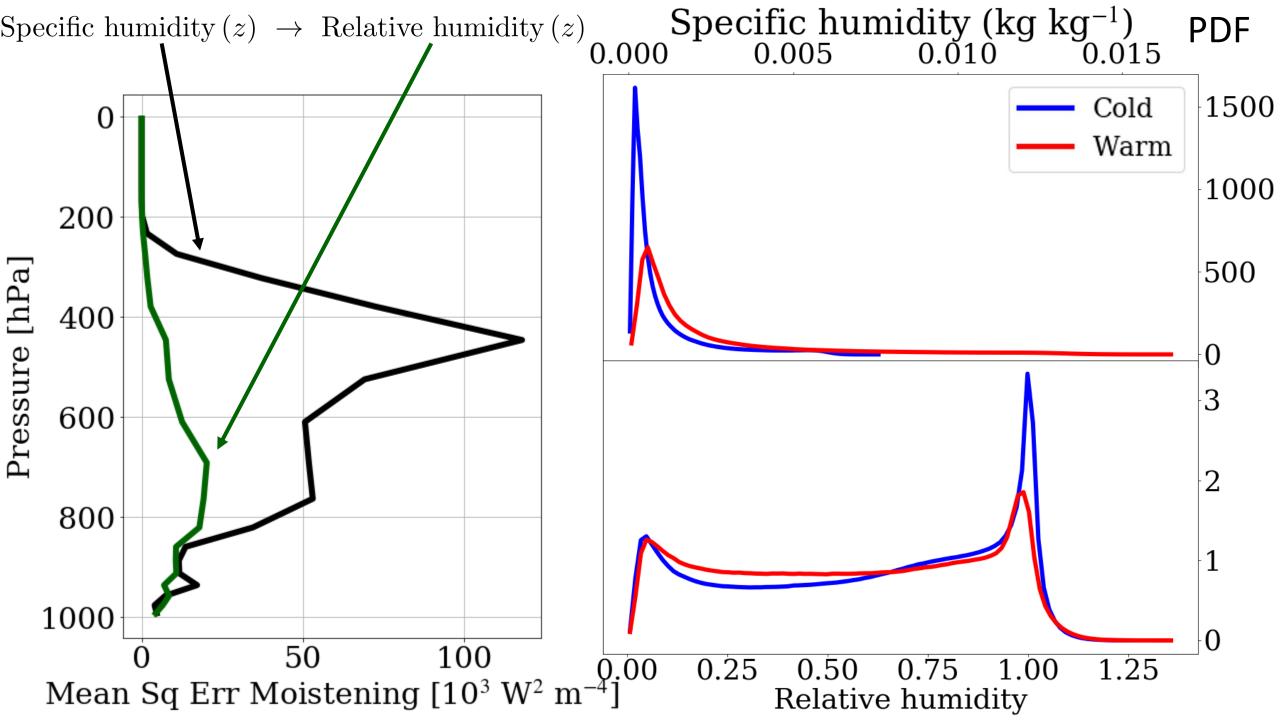
How to choose the physical rescaling?



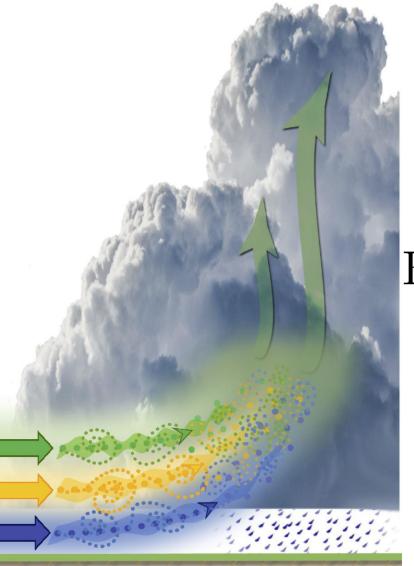
Specific humidity $(z) \rightarrow \text{Relative humidity } (z)$

Generalization improves dramatically!

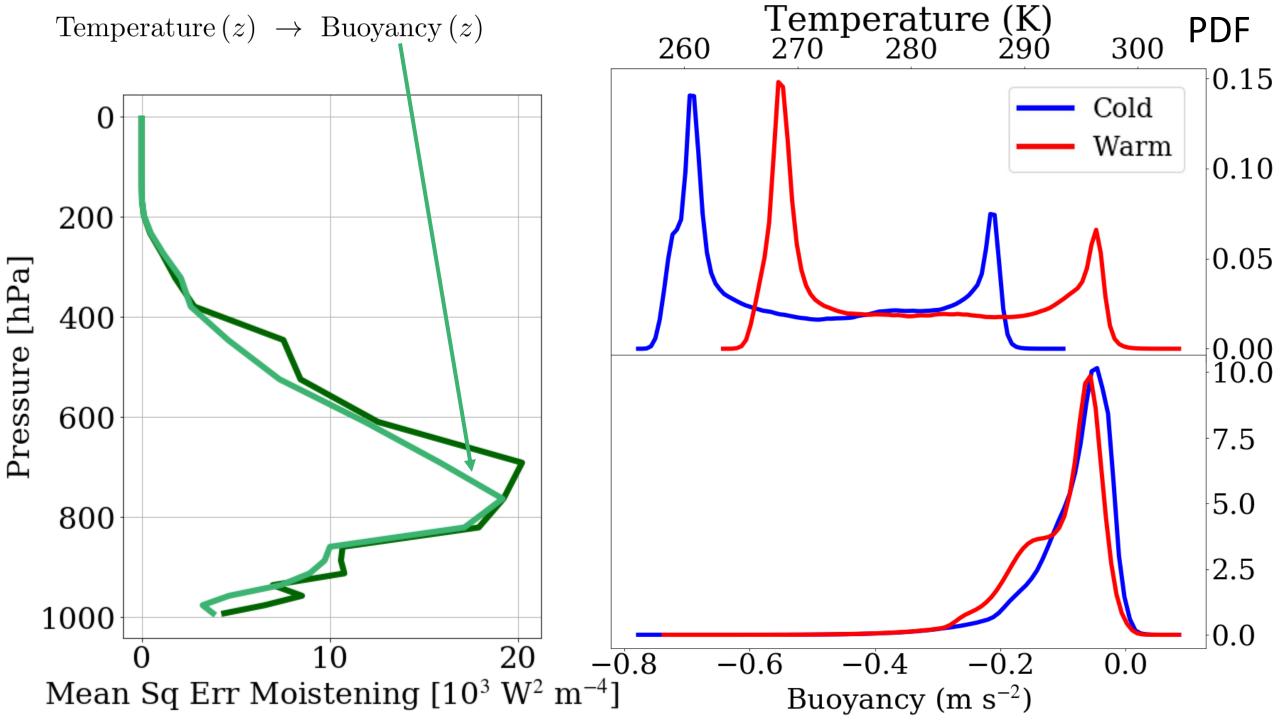


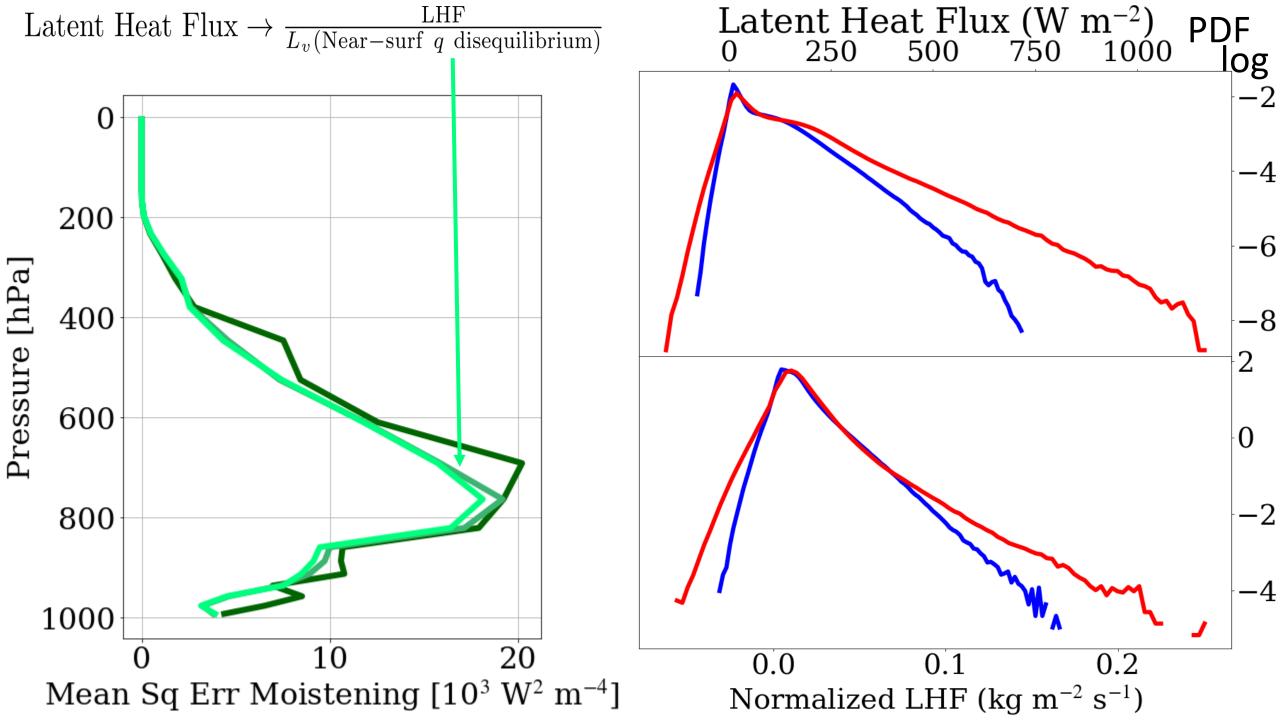


Observations suggest a strong relationship between buoyancy & moist convection across scales

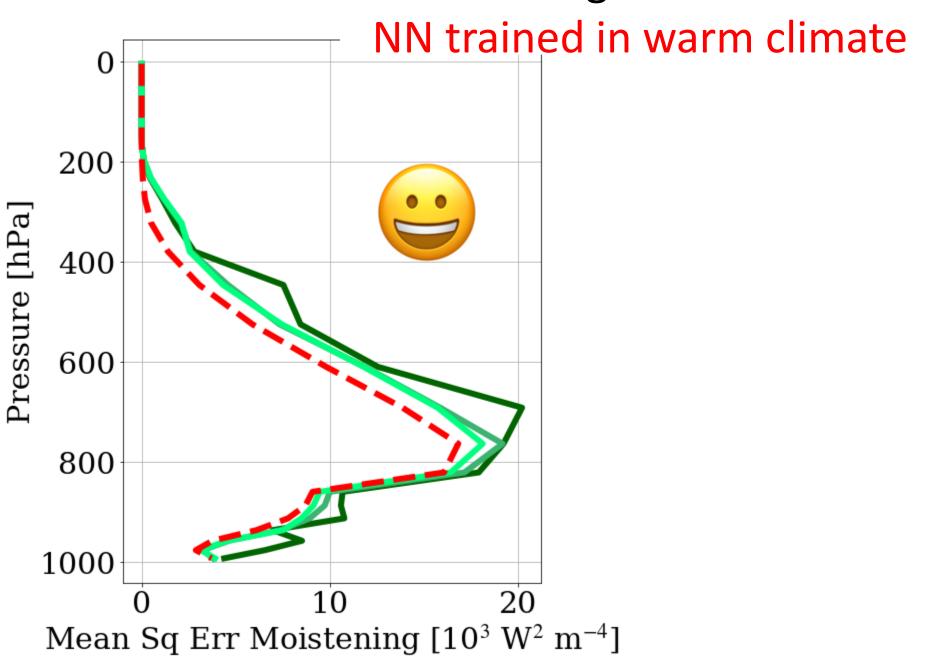


Buoyancy
$$(z) \stackrel{\text{def}}{=} g \times \frac{\text{Temp parcel-Temp}(z)}{\text{Temp}(z)}$$

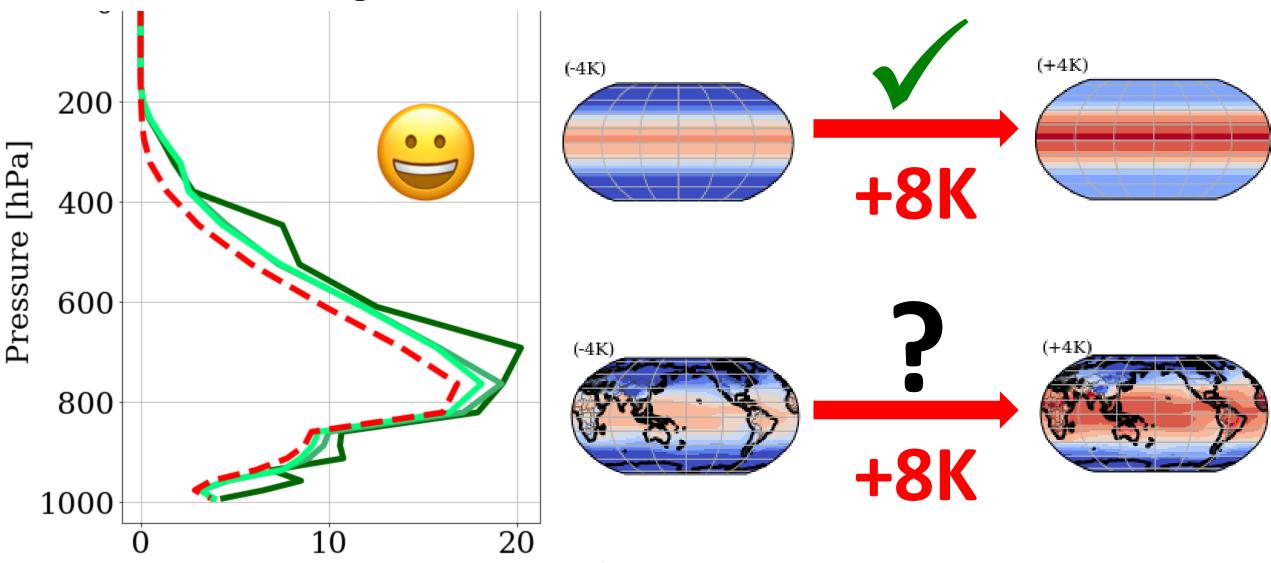




Climate-Invariant NNs generalization error close to



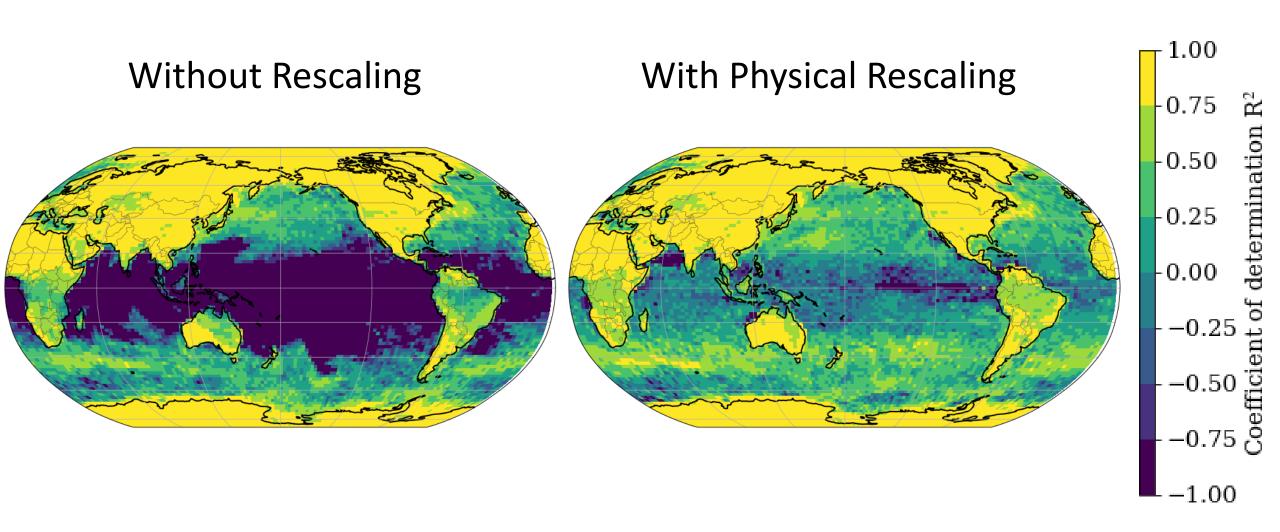
Problem 3: Physically Rescaling Inputs allows NNs to generalize from cold to warm climate



Mean Sq Err Moistening [10³ W² m⁻⁴]

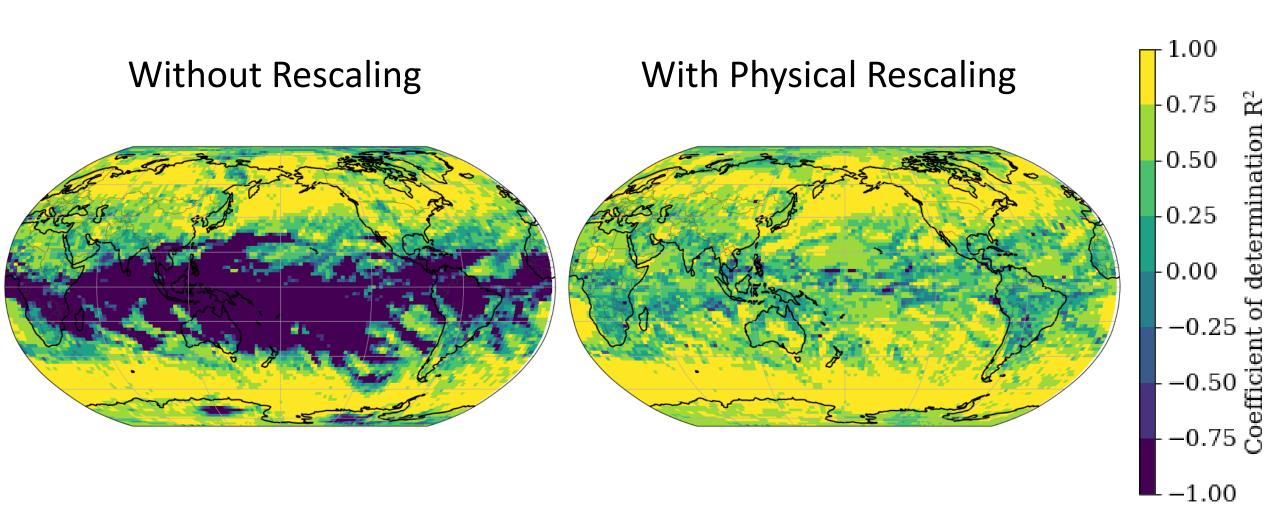
<u>See:</u> Beucler et al. (Under review)

Physically-Rescaled Neural Networks Generalize Better Across Climates in Earth-like configurations



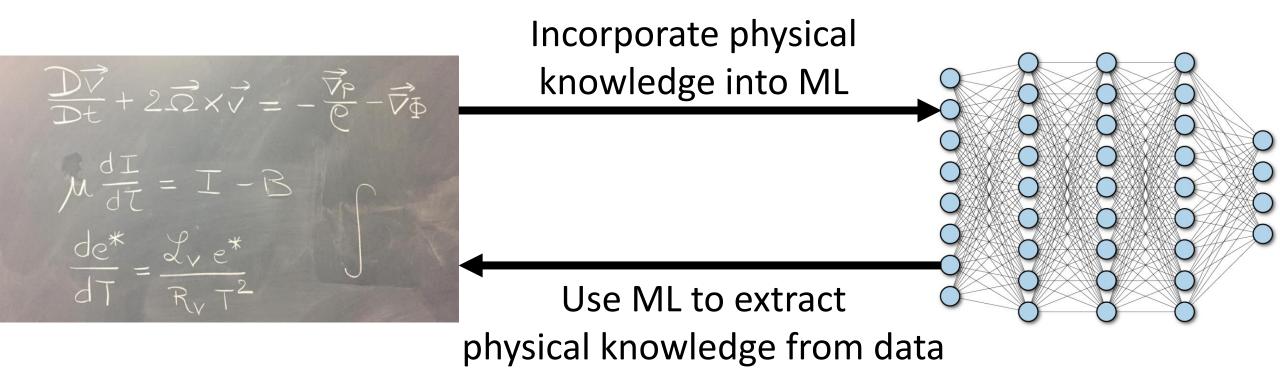
Near-Surface Subgrid Heating

Physically-Rescaled Neural Networks Generalize Better Across Climates in Earth-like configurations

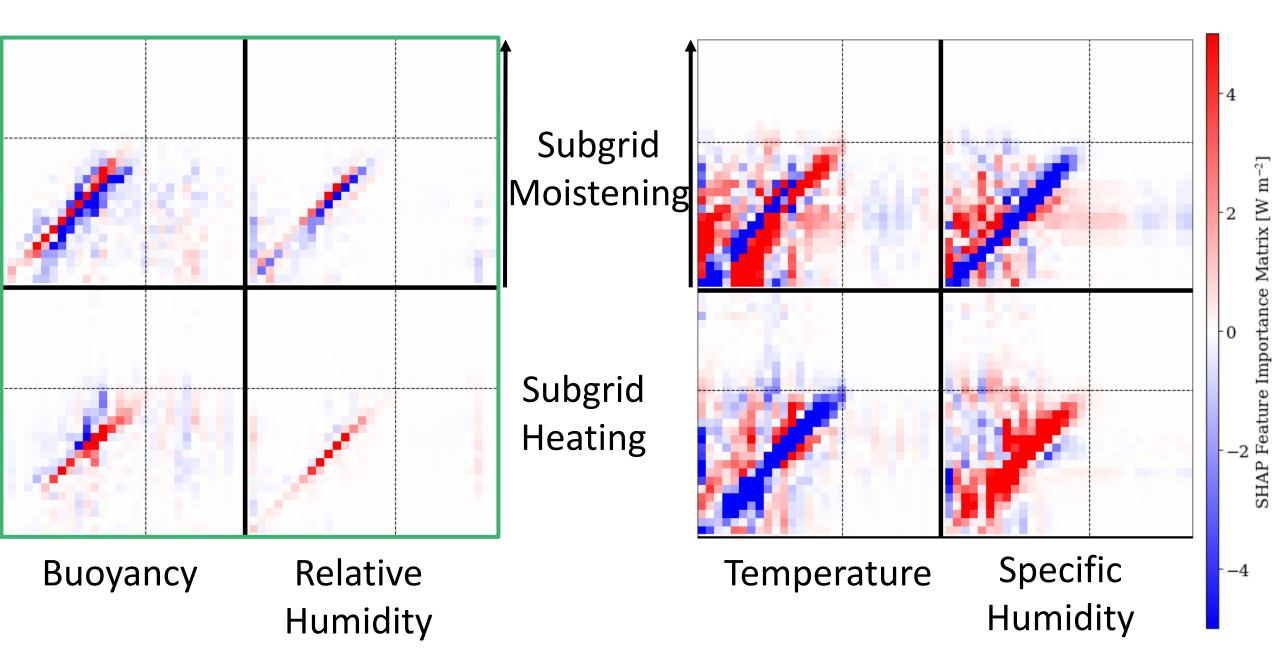


Mid-Tropospheric Subgrid Heating

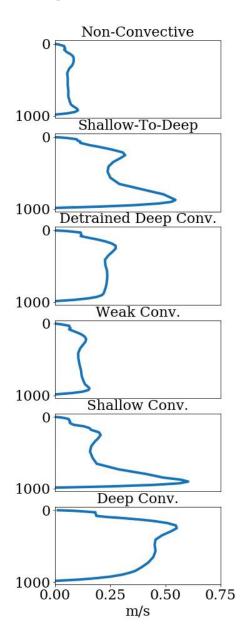
Outlook 1: Extracting Physics from Data

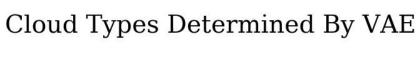


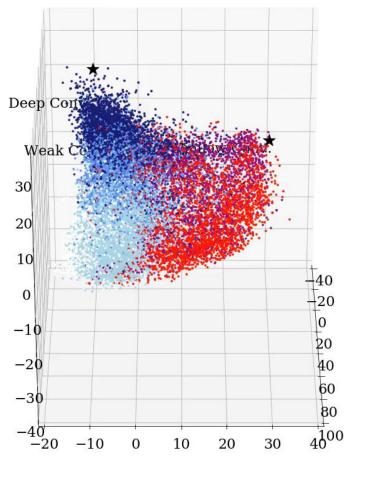
Climate-invariant NNs more local than Brute-Force NNs

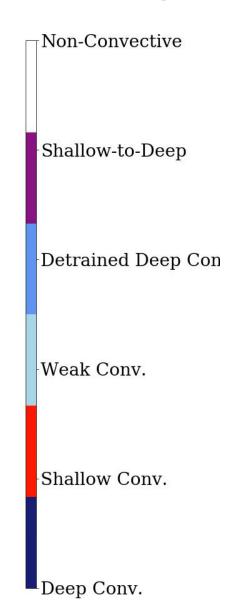


Extracting convective regimes from cloud-resolving data



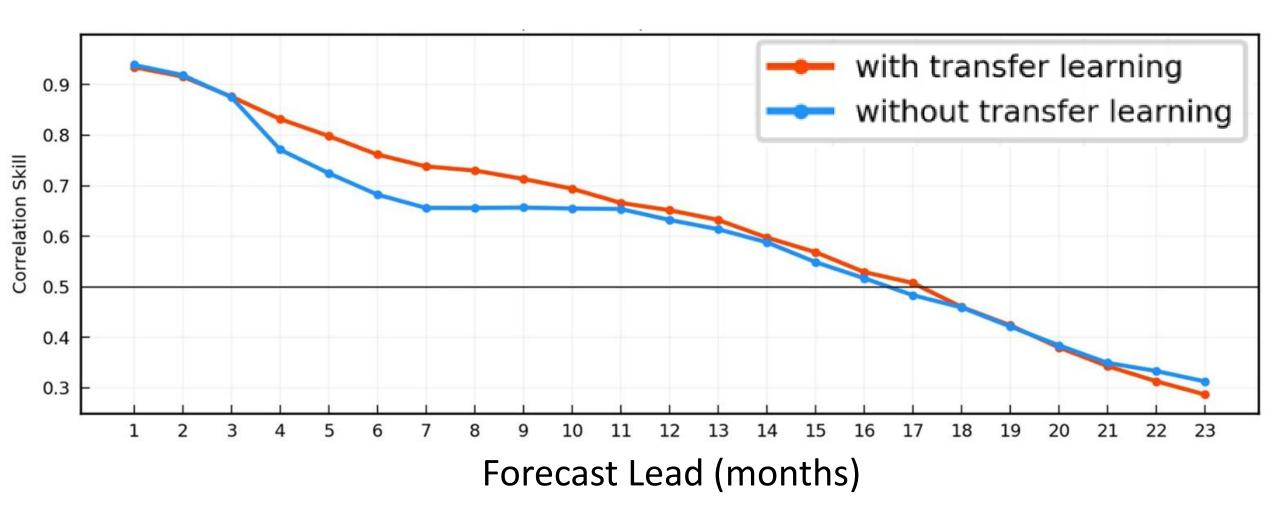




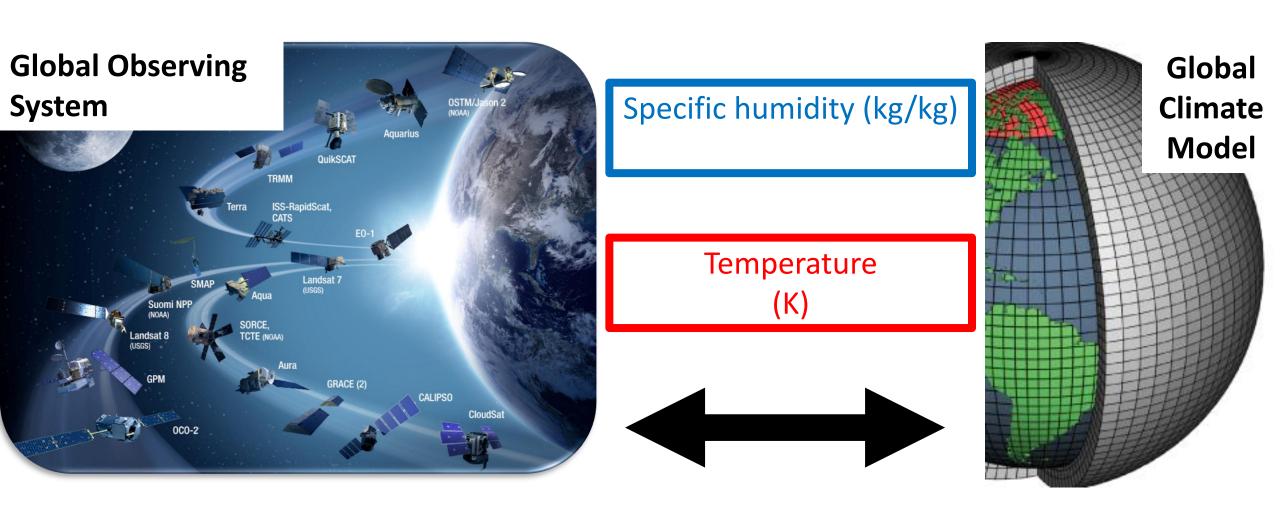


Source: Mooers, Tuyls, Mandt, Pritchard, & Beucler (2020)

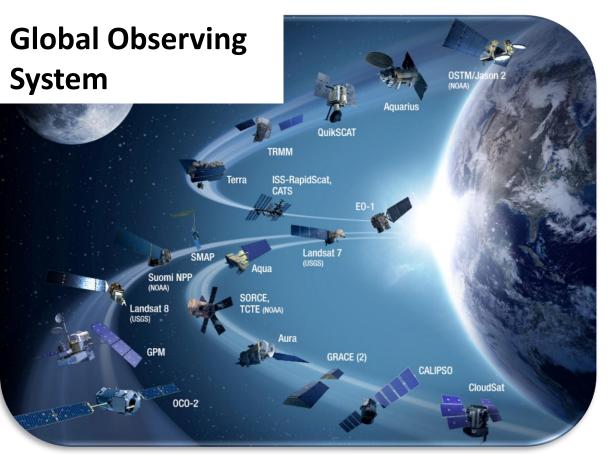
Outlook 2: Transferring knowledge across climates/geographies/models/observations



Problem: Observations of convection are sparse

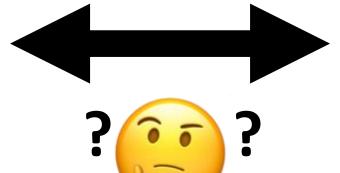


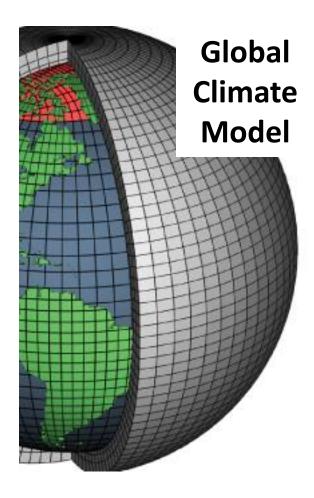
Problem: Observations of convection are sparse



Moistening tendency (W/m²)

Heating tendency (W/m²)



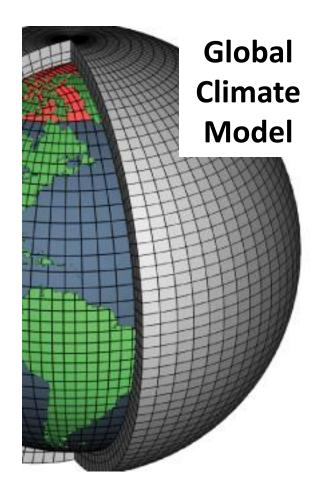


Images: NASA, NOAA

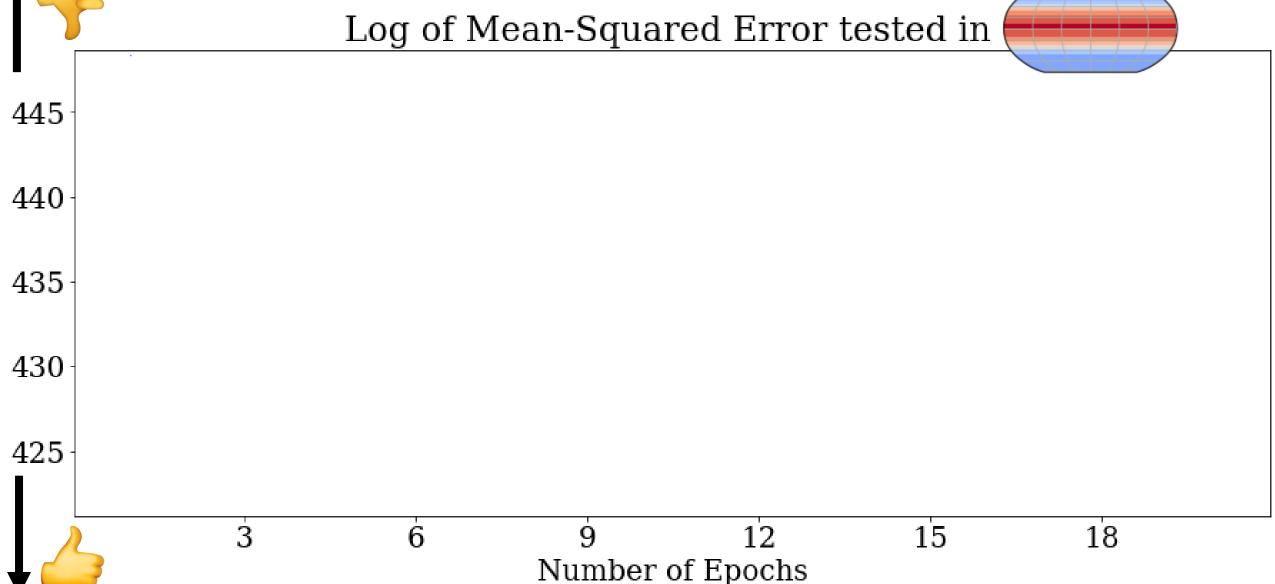
Problem: Observations of convection are sparse

Moistening tendency (W/m²)

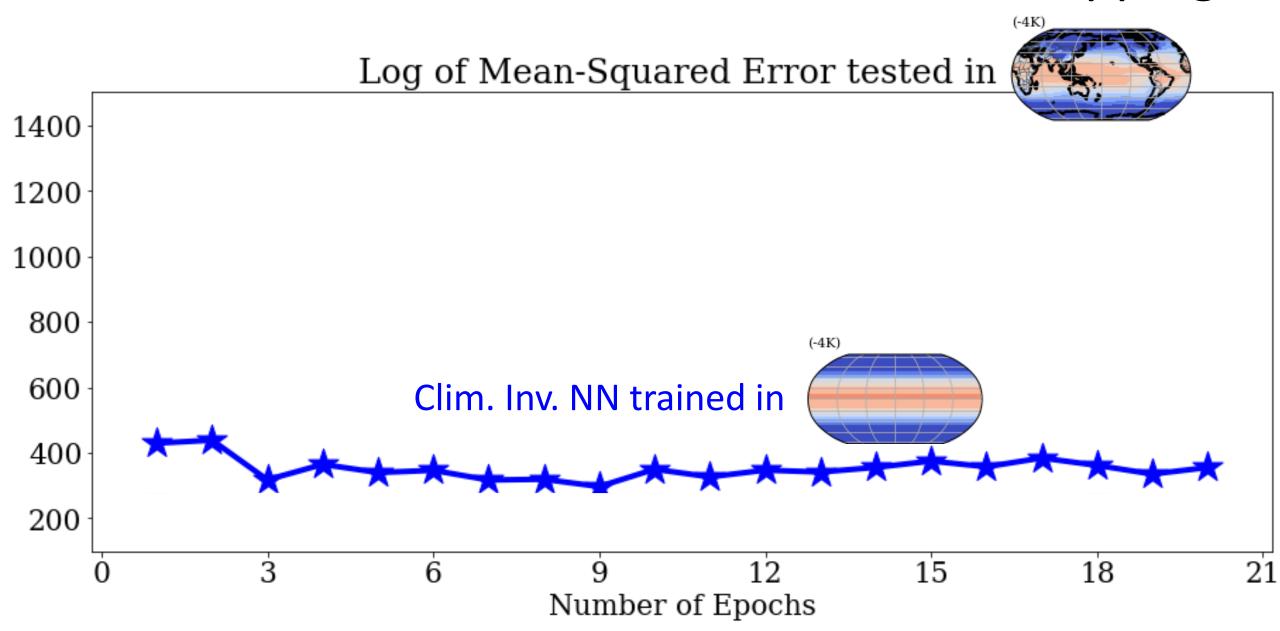
Heating tendency (W/m²)



Climate-Invariant NNs learn transferable mappings Log of Mean-Squared Error tested in



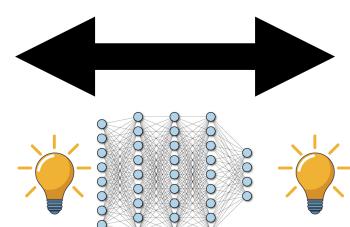
Climate-Invariant NNs learn transferable mappings

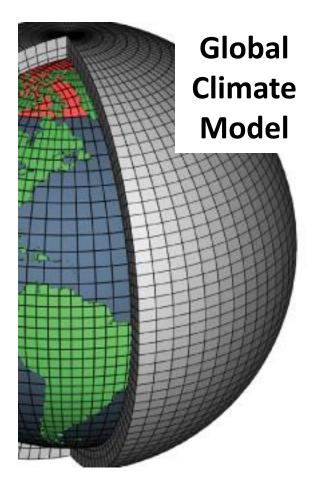


Outlook 2: Physics-informed ML may assist the data assimilation of sparse observations

Moistening tendency (W/m²)

Heating tendency (W/m²)

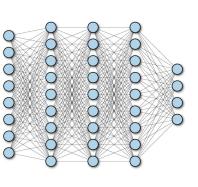


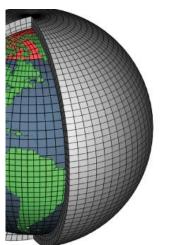


Images: EUREC⁴A, NOAA

Atmospheric Physics can Help Machine Learning

- 1) Enforce physical constraints approx. (loss) or exactly (architecture)
- 2) Tailor ML interpretability methods for emulation of physical processes
- 3) Help NNs generalize by physically rescaling inputs & outputs
- 4) Rescaled ML learns more general mappings/facilitates transfer learning





Images: NASA, NOAA

Thank you

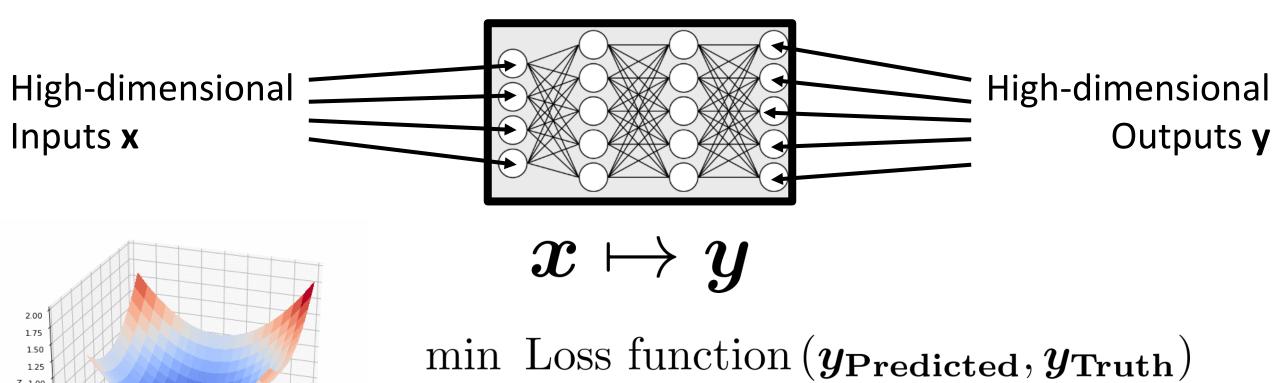
www.unil.ch/dawn

tom.beucler@unil.ch

Bonus Slides

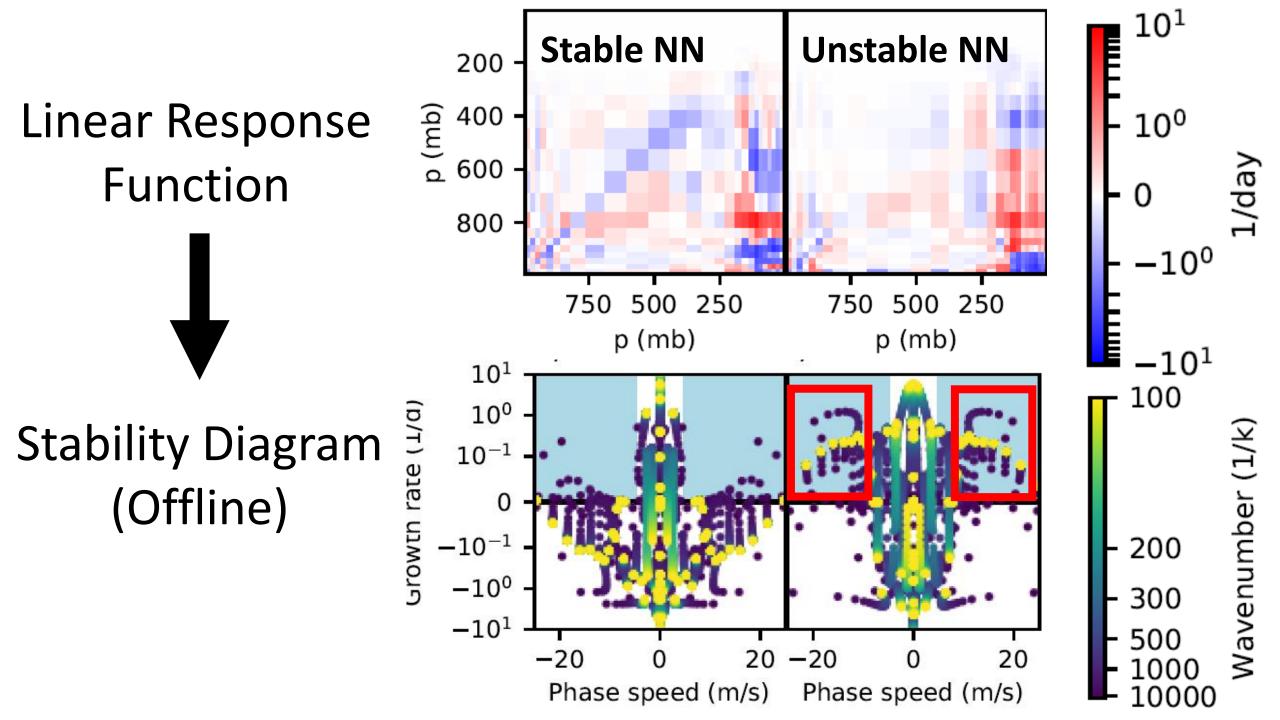
Summary

Neural Network = Non-linear regression tool



1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00

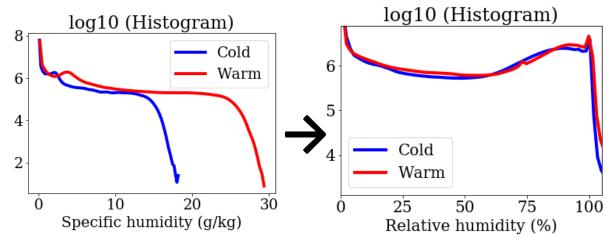
<u>Image source</u>: Kathuria (Paperspace)



Training/Validation on cold aquaplanet simulation

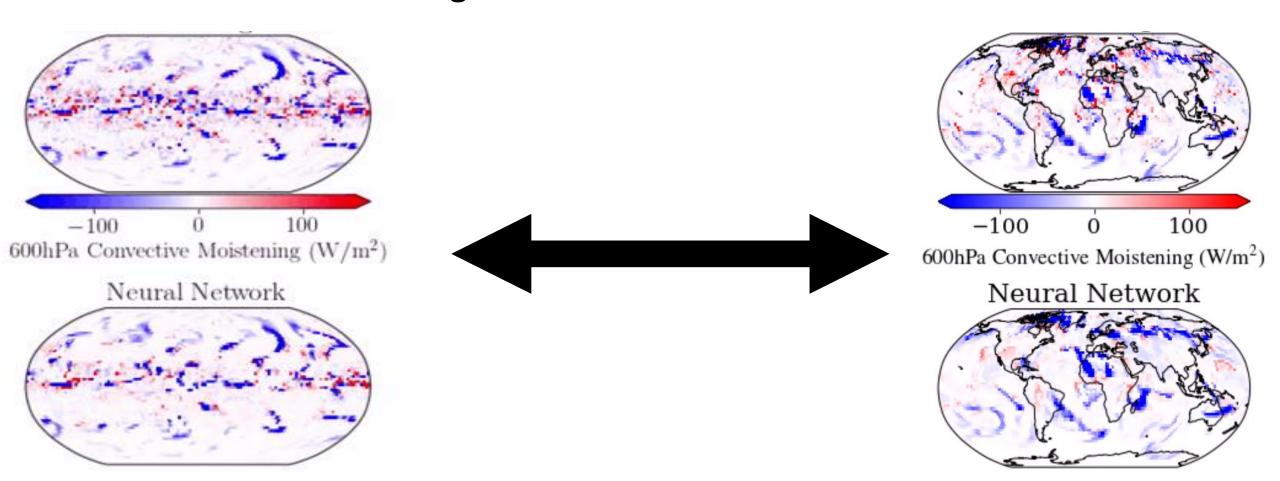
Test on warm aquaplanet simulation

Climate-Invariant nets: Rescale inputs/outputs so that (extrapolation) → (interpolation)



Climate-Invariant neural networks:

- Learn more general mappings
- Facilitate transfer learning

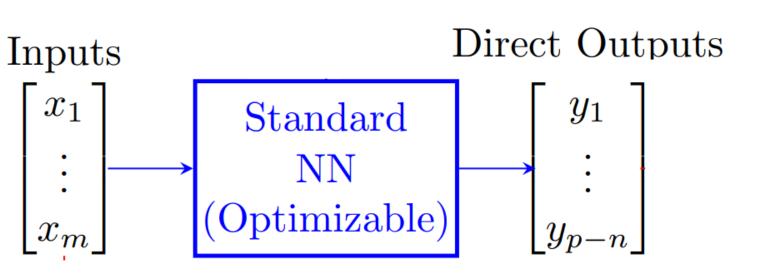


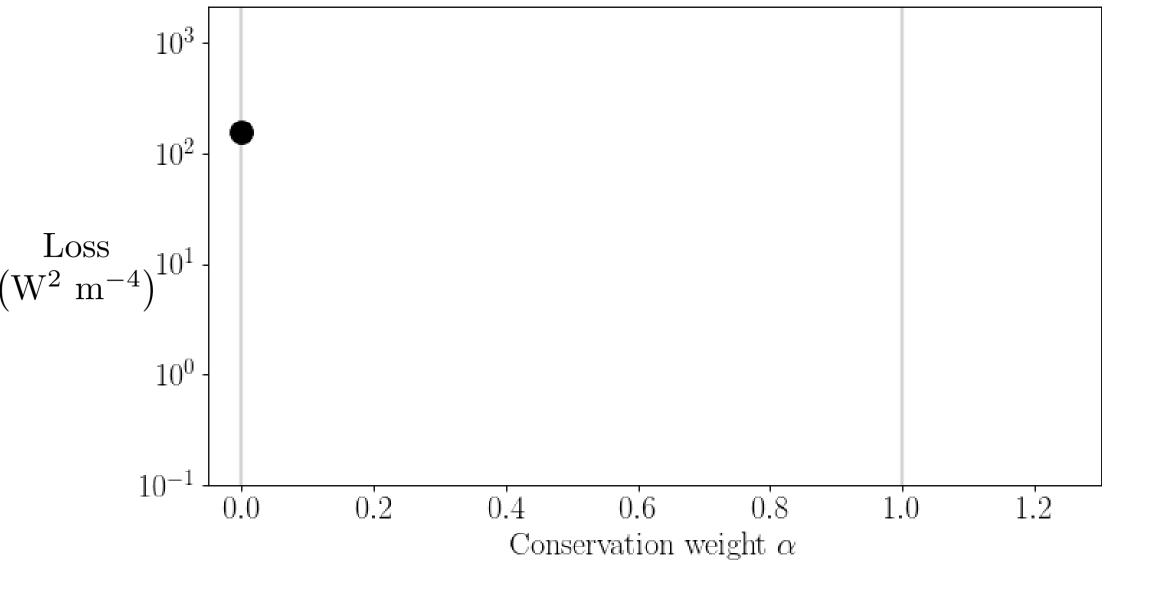
Soft Constraints (Loss) vs Hard Constraints (Architecture)

<u>Loss</u>: Introduce a penalty for violating conservation (\sim Lagrange multiplier):

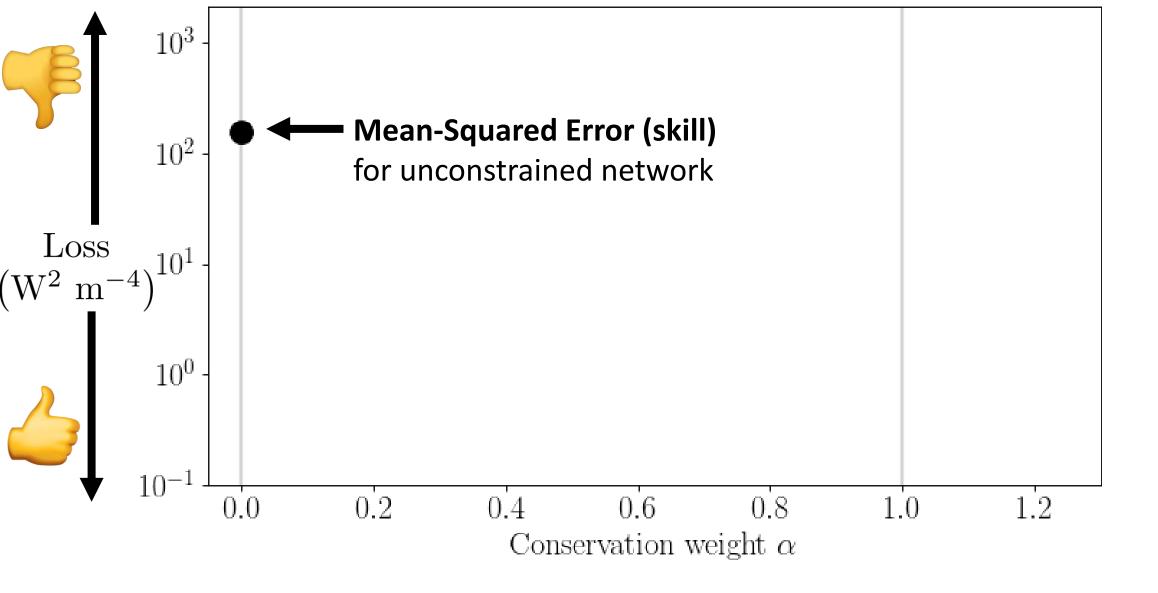
Loss =
$$\alpha$$
 (Squared Residual from conservation laws)+ $(1 - \alpha)$ (Mean squared error)

Architecture: Constraints layers to enforce conservation laws to machine precision

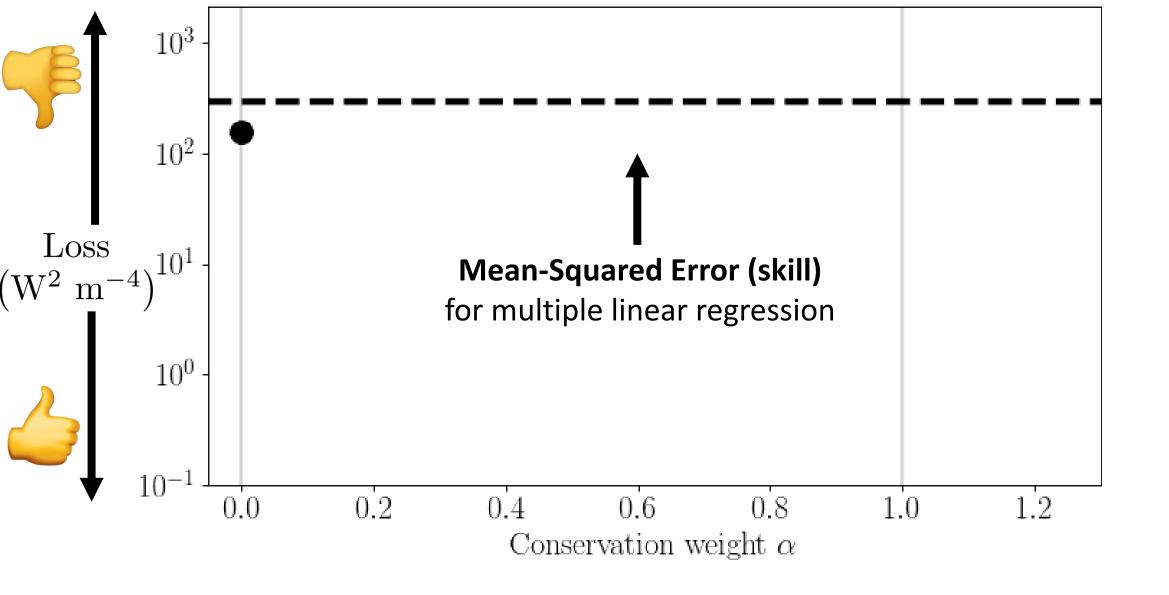




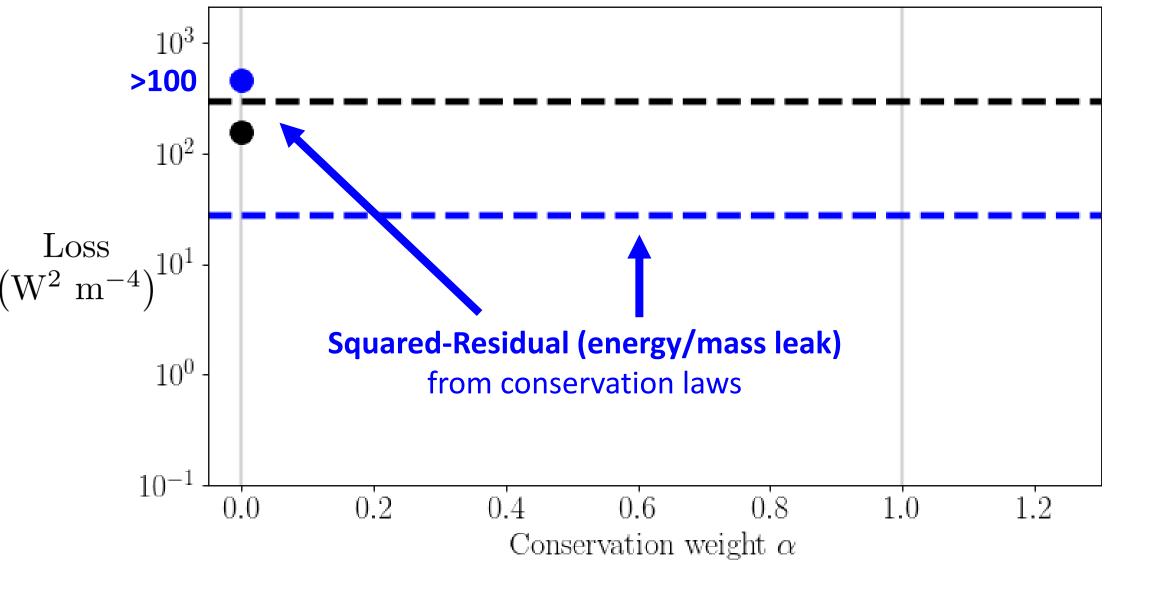
<u>Loss</u>: Trade-off between **physical constraints** and **performance**



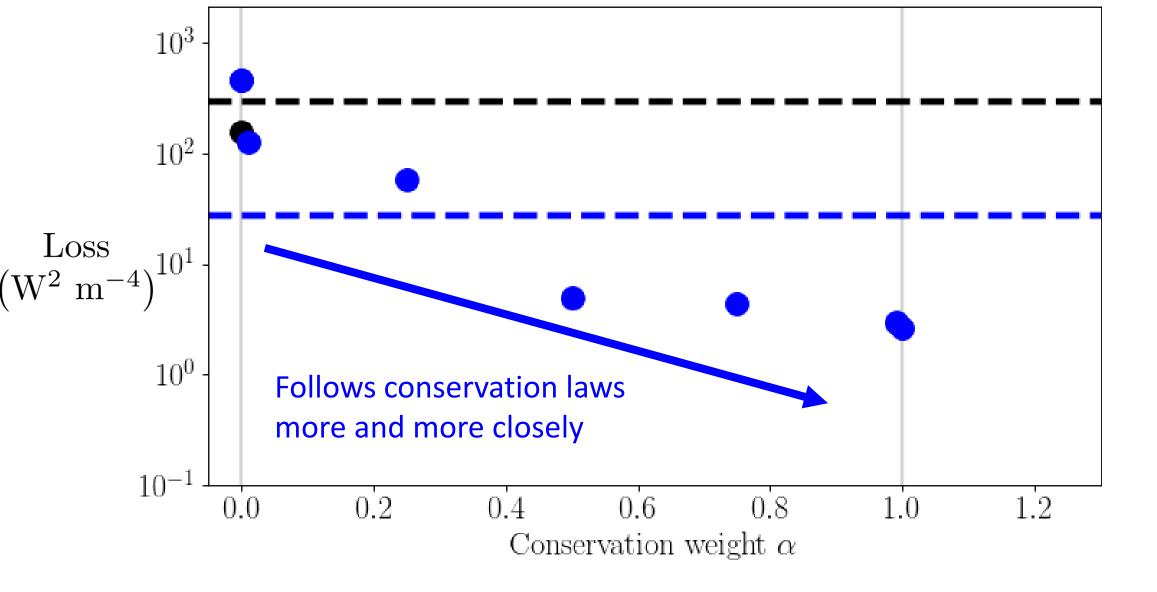
<u>Loss</u>: Trade-off between **physical constraints** and **performance**



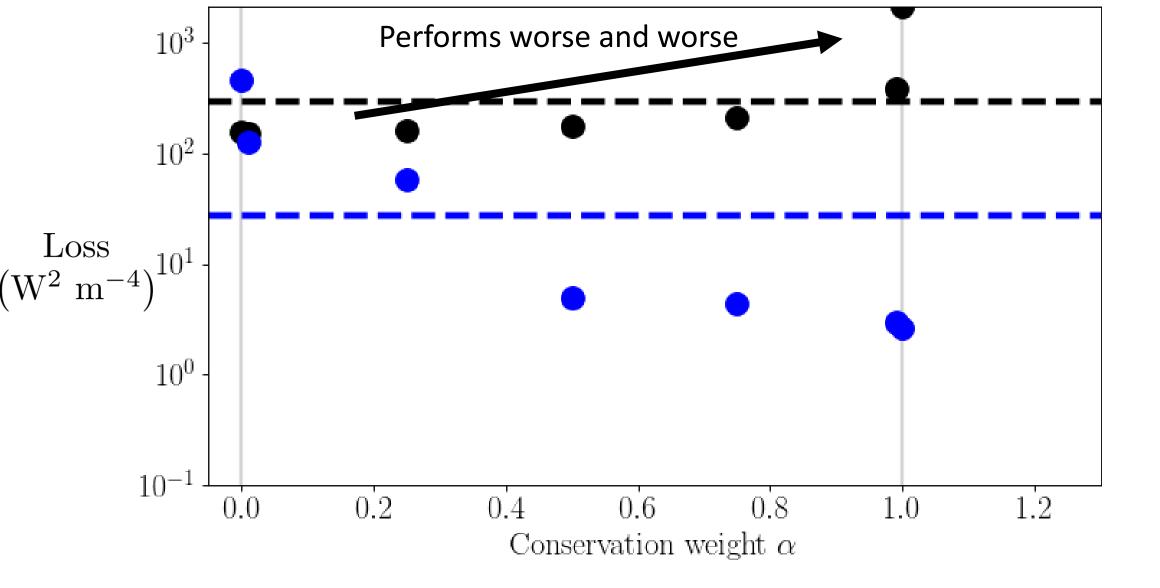
<u>Loss</u>: Trade-off between **physical constraints** and **performance**



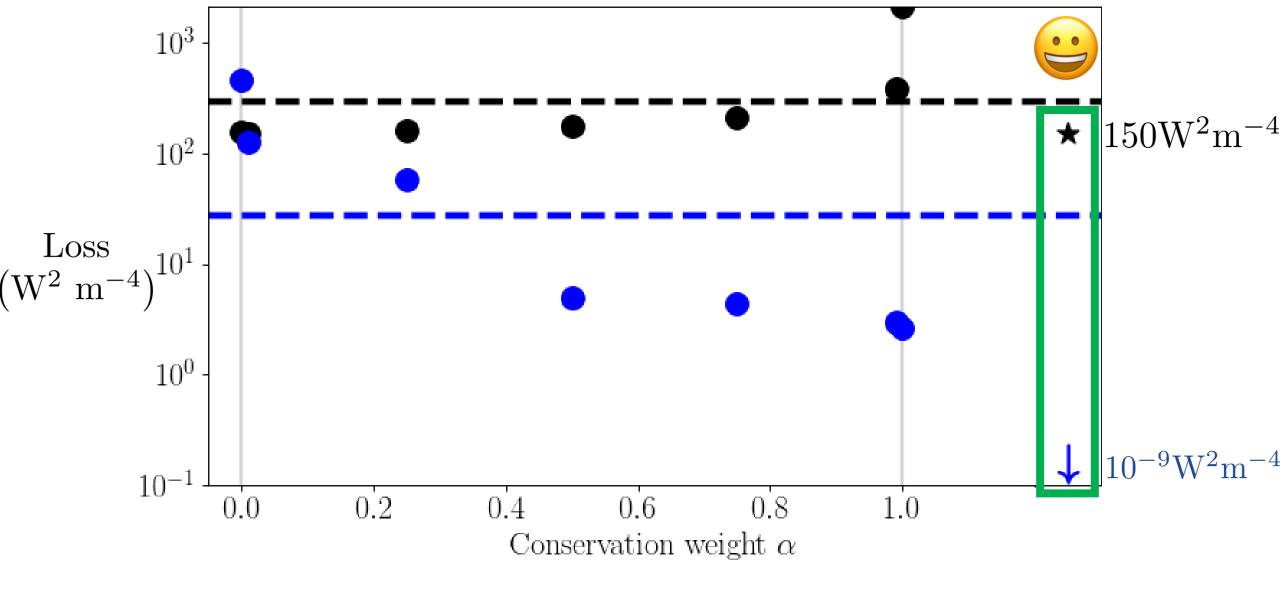
<u>Loss</u>: Trade-off between **physical constraints** and **performance**



<u>Loss</u>: Trade-off between **physical constraints** and **performance**

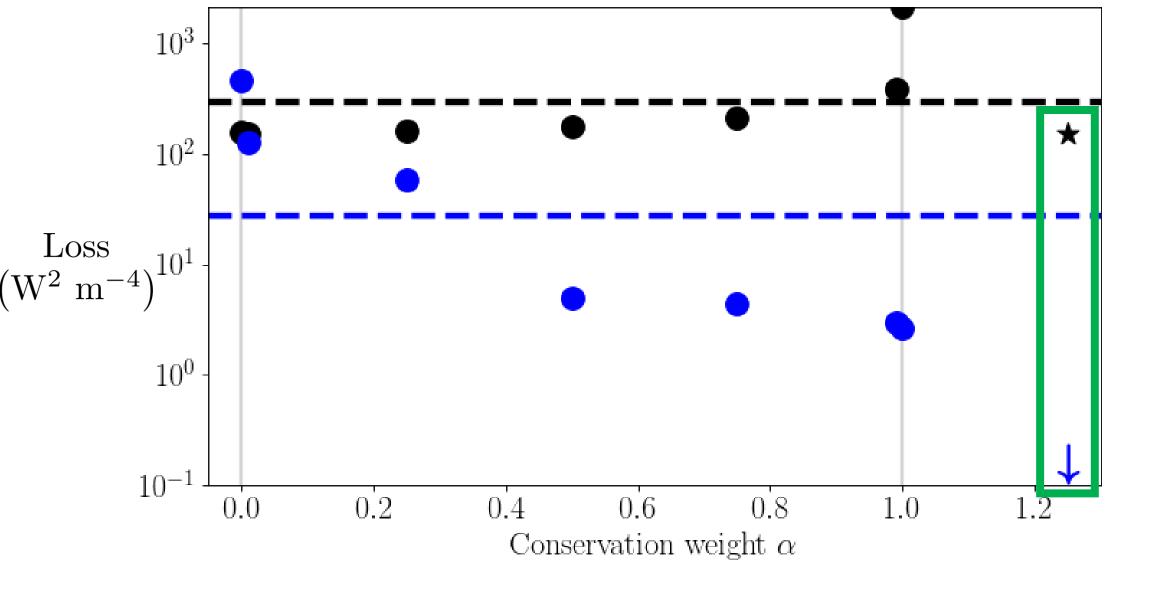


<u>Loss</u>: Trade-off between **physical constraints** and **performance**



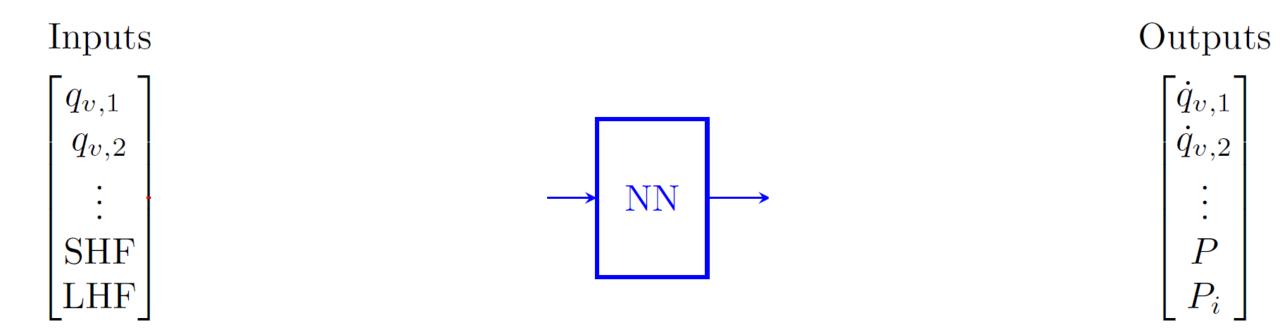
<u>Loss</u>: Trade-off between **physical constraints** and **performance**<u>Architecture</u>: **Constraints enforced & competitive performance**

See: Beucler et al. (2019)



Problem 2: Even when physically constrained, NNs fail to generalize

Algorithms: Custom Data Generators/Layers



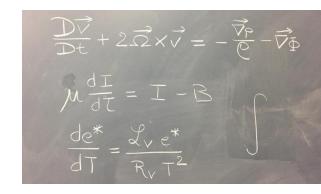
- Only one training/validation/test data despite multiple rescalings
- Test different rescalings quickly using multi-linear/logistic regressions
- Keep the rescalings that yield the best generalization

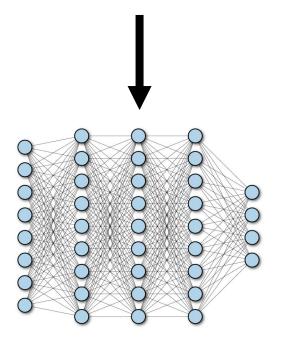
Start with clear link to climate impact/remote sensing

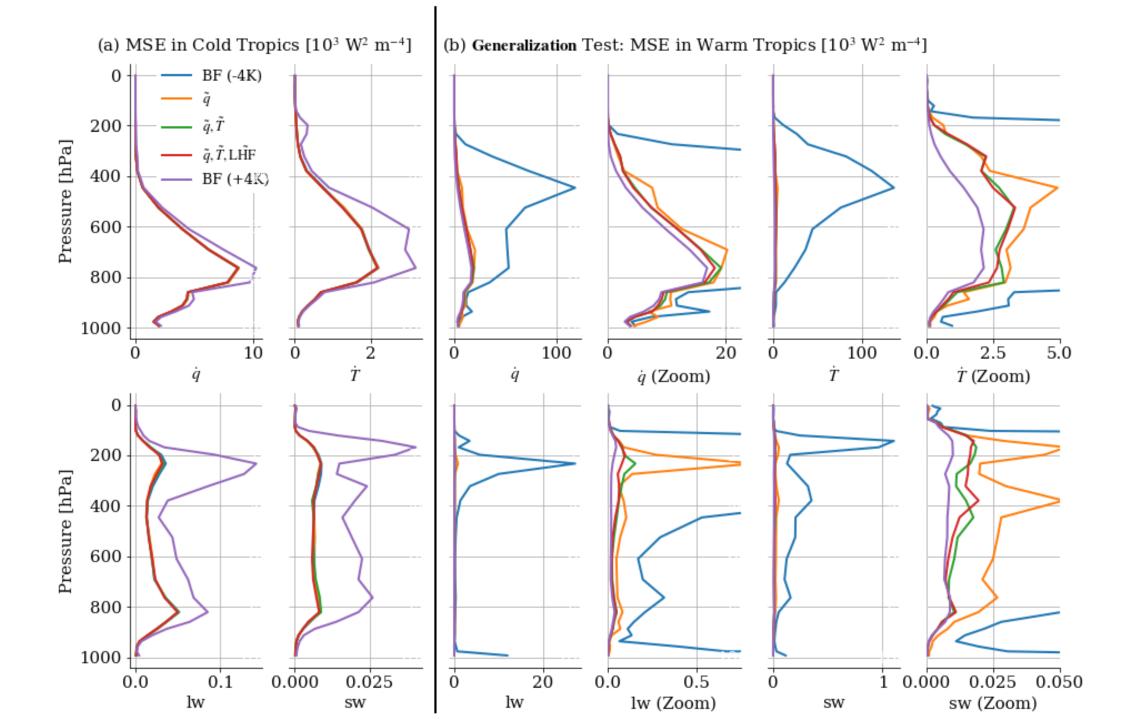
Link = Transfer Learning

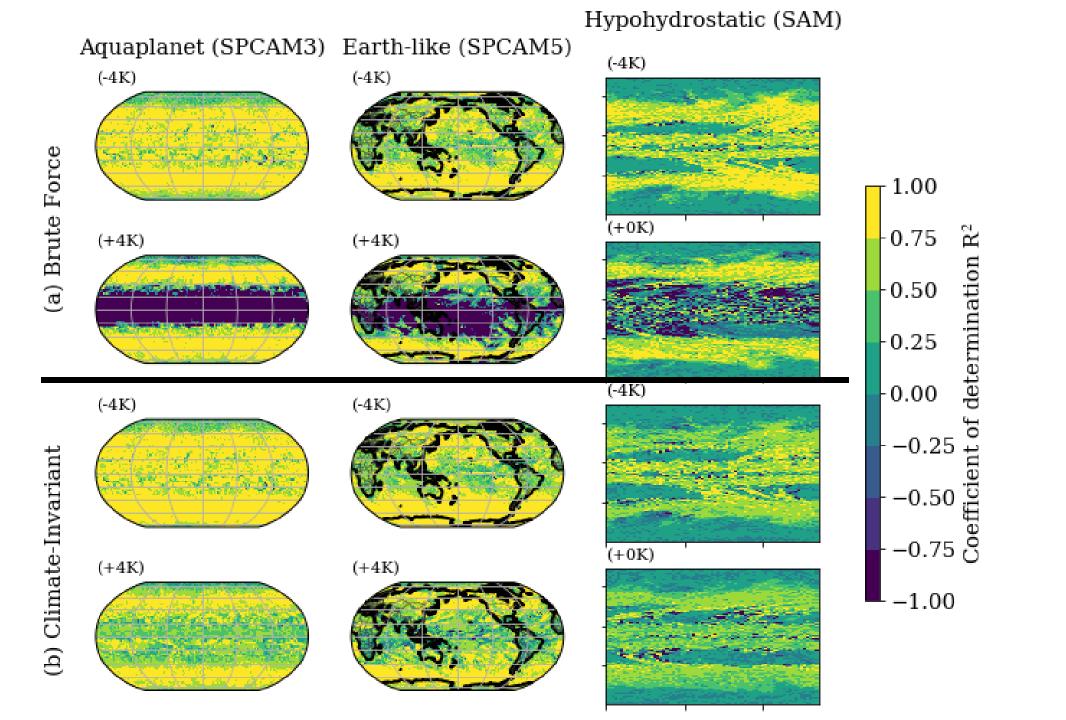
Why Integrate Physics into ML/Stat Algorithms?

- Physical consistency (definitions, conservation laws...)
- Ability to generalize outside of the training set
- Interpretability
- Stability
- Data limitations

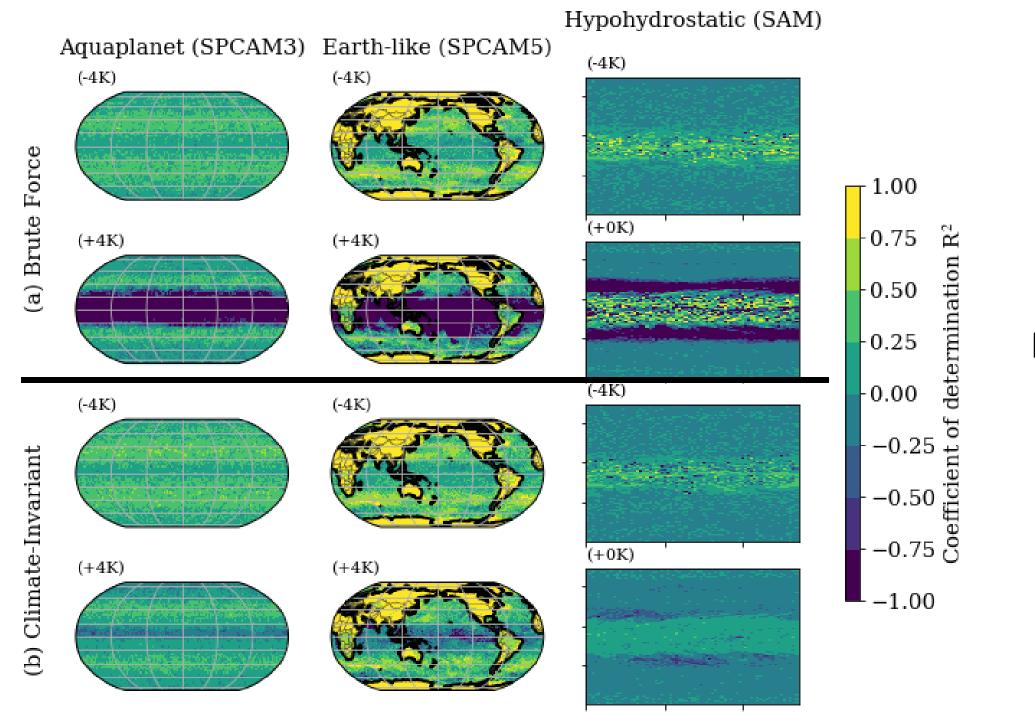








500-hPa Subgrid Heating



Near-surface Subgrid Heating

