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In inference

Optimization

x —|f(x,0)|— ¥

Find best Omin minimizing some score function/maximizing the
likelihood.

Bayesian approach: from deterministic to probabilistic
approach

Look at the full probability distribution

P(0](x,y)) o< P((x,¥)I0) - Porior(0)
» Full information, uncertainty quantification
> Model flexibility (hierarchical, P(8) = P(y|0)P(6]v)P(v))
» Analogy with energy landscapes in statistical physics
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— Description by high-dimensional integrals!
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Sampling by Markov-chain Monte Carlo

Goal

high dimensional integral Average over
fQ (dx)8(x — random x;

(dX)O<eXp( BE(x )) = 3 0L 00x)

Generate x ~(x)
rand(0,1) —» 7
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Sampling by Markov-chain Monte Carlo

Markov process Master equation

dP(dx, t)
dat /g
dr(dx)

dt

(P(dx', t)K(x',dx)— P(dx, t)K(x, dx"))

:o:/(w(dx’)K(x’,dx)—w(dx)K(x, dx))
Q

Global balance

And 7 unique by ergodicity.
Detailed balance 7(dx’)K(x’, dx)=n(dx)K(x, dx")
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Sampling by Markov-chain Monte Carlo

Markov process Master equation

dP(dx, t)
dt
dr(dx)
dt

= [ (P(dX', t)K(x',dx)— P(dx, t)K(x,dx"))
Q

:o:/(w(dx’)K(x’,dx)—w(dx)K(x, dx))
Q

Global balance
And 7 unique by ergodicity.

Detailed balance 7(dx’)K(x’, dx)=n(dx)K(x, dx")

K(x,dx")=q(x,x")a(x, x")dx’ @\ / E B
H1— f a(x.y)alx. y)dy)dems NG

a(x,x’) = min (17 Zg ;f) exp(—BAE )) 2 N\ \! >
Hastings-Metropolis algorithm @ Rejection

(Metropolis et al (1953), Hastings (1977))
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THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicrorAs METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AucustA H. TELLER,
Los Alamos Scientific Laboralory, Los Alamos, New Mexico

AND

EpwArD TELLER,* Department of Physics, University of Chicago, Chicago, Illinois 9 . .
(Received March 6, 1953) 1]
A general method, suitable for fast computmg machmes for mvesugatmg such properties as equauons of
state for consisting of i molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

Metropolis algorithm Diffusive dynamics

@) @) » Correlated sample: 02(Q) x 7(©)
C9g®@g Og0 g Co(t) = (LA B(OY
O O C% » Around 2nd order phase transition 7 o< £ o< L?

Q¢ O% o O% Co(t) ~ exp(~t/7)
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Challenges
K(x,dx")=q(x,x")a(x, x")dx"+ (1—/ q(x, y)a(x, y)dy) Ox—x’
Q

Efficient dynamics over the state space?
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Challenges

Efficient dynamics over the state space?

K(x,dx")=q(x,x")a(x, x")dx"+ (1—/Q q(x,y)a(x,y)dy) Oxex’

Computational complexity of each
move?
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Computation Only computation

of N terms of a few terms?
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Challenges
K(x,dx")=q(x,x")a(x, x")dx"+ (1—/ q(x, y)a(x, y)dy) Ox—x’
Q

Efficient dynamics over the state space?

Computational complexity of each
move?
>
E, By
i i - ° °

High energy barrier and non-local Oxs 00

moveS? E ® ® ® e
Computation Only computation

of N terms of a few terms?
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How to produce collective moves?

Metropolis algorithm » Continuous state space. No discrete symmetry as
O for spin lattices to easily build global g (Cluster
OQ @ @) OC%%C) @ algorithms).
O O » With detailed balance in hard-core particle systems:

OQ OO symmetric proposal probabilities g are necessary for
Q the scheme to be rejection-free.
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» Break DB: Non-reversibility?
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A general method, suitable lor (as! computing machines, for investigating such properties as equations of
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Event-chain Monte Carlo
Bernard et al (2009)

Michel et al (2014), Kapfer et al (2015)
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Metropolis algorithm
(Metropolis et al. (1953))

00 o o OO
@ O
Q¢ O% OOOO

» Acceptance through
Metropolis filter.
min(1, [[; exp(—BAE;))=
exp(—B[>_; AE]4)
Rejections
» Moves are:
- Randomly proposed
- Local
- Finite
» Detailed balance

Event-chain Monte Carlo
(Bernard et al (2009), Michel et al.
09® o

(2014)))
O O g

> D|rect|0n change set by

factorized Metropolis filter.

[T, min(L, exp(—BAE)) =
exp(— >, SIAE])
Rejection free

» Moves are:

- Set by additional variable
- Persistent on global scale
- Infinitesimal

» Global balance

.>.

(€ (€
XG> OXx .xo

T

e
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Event-chain Monte Carlo

(Bernard et al (2009), Michel et al.
(2014)))

o
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» Direction change set by
factorized Metropolis filter.
I, min(1, exp(—BAE)) =
exp(— X, BIAE]L)
Rejection free

» Moves are:

- Set by additional variable
- Persistent on global scale
- Infinitesimal

» Global balance

ECMC for general potential?

L —
)

Reversibility

Non-reversibility

m(dx)K(x', dx) [ m(dx")K(x', dx)

=7(dx)K(x,dx")
— Rejection,
i.e. acceptance prob. (a)

= [, m(dx)K(x,dx")
— Direction change,
i.e. proposal prob. (q)

changes set by g7

How to upgrade to non-reversibility in general case? How to
ensure global balance and ergodicity through only direction


XYecmc.avi

Upgrading the dynamics — Event-chain Monte Carlo

14/40

Event-chain Monte Carlo

(Bernard et al (2009), Michel et al.
(2014)))

o

°8®eo ©00,
<ji}!%§Q!§] )
O@ © o® o ©
o o
» Direction change set by
factorized Metropolis filter.
[1; min(1, exp(—BAE;)) =
exp(—>_; BIAE])
Rejection free
» Moves are:
- Set by additional variable
- Persistent on global scale
- Infinitesimal

» Global balance

ECMC for general potential?

L —
}

. acceptance prob. (a)

Reversibility Non-reversibility
m(dx)K(x', dx) [ m(dx")K(x', dx)
=7(dx)K(x,dx") = [, m(dx)K(x,dx")
— Rejection, — Direction change,
i.e. proposal prob. (q)

How to upgrade to non-reversibility in general case? How to

ensure global balance and ergodicity through only direction
changes set by g7

Global symmetry hunt

Piecewise deterministic Markov process
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General upgrading of the dynamics?

Sampling x ~ T (o exp(—E(x)), E : © — R the potential)
through Markov kernel K(x,dx') = q(x,x")a(x,x")dx" + (1 — [,, q(x, y)a(x, y)dy)du—sx:

o
000 020 o o9® o
o0, Oof% S — é?%
/
¢ 05 o Q@ © o
Reversibility Non-reversibility
m(dx")K(x', dx) =7 (dx)K(x,dx") [ m(dx)K(x',dx) = [, m(dx)K (x,dx")
— Rejection, i.e. acceptance prob. (a) — Direction change, i.e. proposal prob. (q)
Local symmetry constraint Global symmetry?

State space extension 2 — 2 x D to set the proposal probabilities

m(x) — 7(x,e)=m(x) x p(e), e ~ direction (Carefull)
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Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition
No rejection, only direction changes.

No back-and-forth along a fixed trajectory.

No line partition
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Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition
No rejection, only direction changes.

No back-and-forth along a fixed trajectory.

No line partition

— Piecewise deterministic Markov process

PDMP characterizing elements (pavis (1993), in MCMC: Bouchard-Cété et al (2018), Bierkens et al (2019))
» Differential flow (¢¢)r>0
> Jump rate \(x,e) + X
> Markov kernel Q (repel kernel)
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Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition
No rejection, only direction changes.

No back-and-forth along a fixed trajectory.

No line partition

— Piecewise deterministic Markov process

PDMP characterizing elements (pavis (1993), in MCMC: Bouchard-Cété et al (2018), Bierkens et al (2019))
» Differential flow (¢¢)r>0
> Jump rate \(x,e) + X
> Markov kernel Q (repel kernel)

Infinitesimal generator Af = lim;_q Pfft_f, Dyf(x, e) = lim;0 M

AF = Dyf(x, )+ A(x, ) / (F(x, &) — F(x, €))Q((x, ), de’) + X / (F(x, &) — F(x, &))u(de)
~—— D D

Transport

Events - Direction changes Refreshment
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Invariance: Transport compensated by the direction changes

Pif—f
t

(F(x.€) — f(x.€))Q((x, ), de’) + A /D(f(& e') — f(x, e))u(de’)

Events - Direction changes Refreshment

Infinitesimal generator Af = lim;_,q

Af = Dyf(x,e)+ A(x, e)/
——

D

Transport

Conditions for # = 7 x p invariant: [, , Afdrdpu =0

foD Dy f(x, e)m(dx)u(de)
= [aup Jp Alx, €)(f(x,€') — f(x,€))Q((x, e), de’)m(dx)u(de)
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Invariance: Transport compensated by the direction changes

Infinitesimal generator Af = lim;_,g Ptf;f

AF = Dyf(x, )+ A(x, ) / (F(x, &) — F(x, €))Q((x, ), de’) + X / (F(x, €') — F(x, &))u(de)
~—— D

D
Transport Events - Direction changes Refreshment
Conditions for # = 7 x p invariant: [, , Afdrdpu =0
foD Dyf(x, e)m(dx)p(de)
= Jaxp Jp AMx; €)(f(x, ') — f(x,€))Q((x, e), de’)m(dx)u(de)
With a flow along e, by integration by part, (7(x) o« exp(—E(x))) e
-e X
[ (VE() )t clutde) = [ [ (VEM).e). (. )le - €u(de) 4 J
D pJD VEy o

brought by transport redistributed by direction change



Event-chain Monte Carlo/PDMP-sampling in a few words

With a flow along e, by integration by part, (7(x) o« exp(—E(x)))

e N
/ (VE(x). —e) F(x. ¢)pu(de) = / / (VE(x), ), 7(x. ¢)Q(e - ¢')pu(de) 4 J
D D JD VE‘

brought by transport redistributed by direction change

Main idea

Find some symmetries on the way the energy change in order to get some balance

> (VaE,e)=0— Y (VaEe)= >  —(VaE,e)
A A A
(VAE,6)>O <VAE76><0

— Y (VaE,e); =) (VaE,—e);

A A
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Chasing down symmetries

Pairwise interactions

O

090 o
oé "o
® ©g

Exploitation of mirror
symmetry through factorization
Vi Eij(x) = =V Ejj(x)

(i.e. divEj; =0)
Deterministic kernel @

Michel et al (2014)
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Chasing down symmetries

Pairwise interactions

O

090 o
oé "o
® ©g

Exploitation of mirror
symmetry through factorization
Vi Eij(x) = =V Ejj(x)

(i.e. divEj; =0)
Deterministic kernel @

Michel et al (2014)

n-body interactions

-d1E/d2E

-d3E/dE

Exploitation of translational
invariance div E=10
- Zik <VXik Ei..,, V> =0

— Z<ink Ef1-~l'n> V>+ =
ik

D (VX By — V)4

ik
Non-deterministic kernel Q
Harland et al (2017)
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Chasing down symmetries

Pairwise interactions

O

090 o
oé "o
® ©g

Exploitation of mirror
symmetry through factorization
Vi Eij(x) = =V Ejj(x)

(i.e. divEj; =0)
Deterministic kernel @

Michel et al (2014)

n-body interactions In the general case?

-d1E/d2E

-d3E/dE

Exploitation of translational
invariance div E=10

- Zik <VXI';< Eil'“n’ V> =0
_>Z<inkEi1min7 V>+:
ik

D (VX By — V)4

ik
Non-deterministic kernel Q
Harland et al (2017)
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General case: Exploiting rotational invariance

eout L.
Deterministic kernel @

No a priori symmetry, but if reflection or flip:
VE €in VE. €in = —-VE- €out

Q(ein — €out) = 0(€out — Rv£(x)(€int))
D

(Peters et al (2012), Michel et al (2014), Bouchard-Cété et al (2018), Bierkens et al
(2019))



2DGauss.avi
MovieCMAP20.avi

Upgrading the dynamics — Replacing time reversibility by potential symmetries 20/40

General case: Exploiting rotational invariance

Cout L.
Deterministic kernel @
No a priori symmetry, but if reflection or flip:
VEY  €n VE-en=-VE- ey

Q(ein — eout) = 6(eout - RVE(X)(eint))

(Peters et al (2012), Michel et al (2014), Bouchard-Cété et al (2018), Bierkens et al
(2019))

Cout Rotational invariance around VE:
/ JIVE(x),e)u(de) = 0 — [(VE(x),e): u(de) = [(VE(x), —e). p(de)
VEYy €, ue"e(’;(de) = (VE(x),—e)ru(de)/ [(VE(x),—e),p(de) should be conserved
by Q!

» Independent pick of new directions Q(ein — out) x (VE(X), —€out)+

@ @ @ » Non-reversible in E

(Michel et al (2020))
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lllustration - Anisotropic Gaussian

Gaussian distribution E = 37, x?/(202), o; € [1,1000] - 400 dimensions @

(section of the dimensions with the largest variances)

Metropolis HMC Reflexion Direct pick
Reversibility and Local symmetry Reversibility and kinetic energy Irreversibility and Local Symmetry Irreversibility and Global Symmetry

o
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Reducing the computational complexity
Computational complexity in ECMC/PDMC
Complexity reduction for local MC algorithms
Clock MC - Applications
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What about Complexity?

N interaction terms
AE=YV AE
Metropolis algorithm:

p(i—j)=min(1,exp(—BAE)) Eo

E E

Computation Only computation
of N terms of a few terms?
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Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP)

Direction changes ruled by a Poisson process of rate A = Z,N:l i
Ai = max(0, dE;).
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Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP)

Direction changes ruled by a Poisson process of rate A = Z,N:l i
Ai = max(0, dE;).

Complexity reduction by thinning (Lewis and Schedler (1979))

Consider the bound A\Beund > )
Superposition of PP: ABound — ) 4 \Fake
—&—0—890—® Bound, \Bound
z . | Fak
—@ ‘l’ & ‘1‘ Fake, praxe
= ®> True, A\

True event with probability \/\Bound
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Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP)
Direction changes ruled by a Poisson process of rate A = Z,N:l i

Ai = max(0, dE;).

Complexity reduction by thinning (Lewis and Schedler (1979))

Consider the bound \Beund > )
Superposition of PP: ABound — ) 4 \Fake
—&—0—890—® Bound, \Bound
z . | Fak
—@ ‘l’ & ‘1‘ Fake, praxe
= ®> True, A\

True event with probability \/\Bound

Writing now ABound —
And )\Bound )\ +>\Fake
_.—) Bound )\Bound
S SN Factor, ABound
Fake, )\Fake
—@——— True, A}

Pick a potentially rejecting term i with

Apound /ABound 3nd resample a true event with
/\’_/A?ound_

Z )\}_%ound7 )\’Bound Z )\i’v,'
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Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP)
Direction changes ruled by a Poisson process of rate A = Z,N:1 i

Ai = max(0, dE;).

Complexity reduction by thinning (Lewis and Schedler (1979))

Consider the bound ABund >
Superposition of PP: ABound — ) 4 \Fake
—8—8—8-90—® Bound, \Pound
M - | Fak
—@ ‘l’ & ‘1‘ Fake, praxe
= ®> True, A\
True event with probability \/\Bound
Logistic regression: Bouchard-Coté et al
(2018); Soft spheres: Kapfer et al (2016)

Writing now ABound —

And )\Bound )\ +>\Fake

_.—) Bound )\Bound

— Factor, ABound
Fake, )\Fake

—@————> True, \;

Pick a potentially rejecting term i with

Apound /ABound 3nd resample a true event with
/\’_/A’Bound_

Z )\}_%ound7 )\’Bound Z )\i’v,'



Reducing the computational complexity — Complexity reduction for local MC algorithms 25/40

Clock Monte Carlo method (Mmichel et al (2019))

Metropolis filter AFEio = Zl AFE; Rejection Acceptance
Prej =1- PMet
One-step Bernoulli Transition

sampling

process N
Pyjet= exp (—5 [AE¢q] ) 1=Pyet +  Paet=1
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Metropolis filter AFEio = ZZ AFE; Rejection Acceptance
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sampling

process N
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Clock Monte Carlo method (Mmichel et al (2019))

Metropolis filter AFEio = ZZ AFE; Rejection Acceptance
Prej =1- PMet
. @ AE: |2 wp -
One-step Bernoulli Transition
sampling

process N
Pyjet= exp (—5 [AE¢q] ) 1=Pyet +  Paet=1

Factorized filter and its consensus rule
sampling rejection <+ sampling first factor rejecting

Prj =1— Ppae = Z,’(l - pi) Hj<,'pj

Factors: accepting O rejecting ¥ not evaluated ®

N-step Bernoulli process!

Transition
sampling

Prac = exr)(*ﬂ > [AEi]+) T-p + (L=po)pr +.+(1=pi) H;:l Prt.+(1=pn) Hl’c\; Pk + Hg:l k=1
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Clock Monte Carlo method

JZ2
Pr [)lr

. e P2 g . e
N Q ...

Complexity reduction

» Consider a bound Bernoulli process pg = [] pg,i, with Vi, p;> pg.;
Al
. A A
> Prej(’):P,Rqu(le"‘sz) Ay
» Sampling a clock is replaced by the sampling of a random path of successive Az
R A1l

events (A;) or (Az) until a true rejection (R) is sampled or the path is of
length N.

» Given configuration-independent bounds, successive bound rejections sampled in O(1).

» Complexity C = number of attempted bound rejections ~ O(In pg/In pgac), ~ 1 if pg and

Prac Scale with N similarly.
> Long-range cluster algorithms (Luijten et al (1995), Fukui et al (2008)): effectively uses a

factorized filter.
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Performance analysis

Overall acceleration A ~ O(N/C~)

> A complexity speedup O(N/C);
» But a smaller acceptance rate slowing-down,
Y= pMetro/pFact

B

100

10

Integrated autocorrelation times

© Clock FMet/y
¢ Met Iy
]
)
8
8
8

Mean-field Ising

O Clock FMet/~ 8
¢ Met ?
3

L
°
[

Mean-field XY

0 Clock FMet/~ 0
O Met 9
9

®
é
]

Mean-field Heisenberg

16 256
N

4096

16 256
N

4096

16 256 4096
N
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Performance analysis

Integrated autocorrelation times
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The energy extensivity nature directly controls the performance!
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Performance analysis

Integrated autocorrelation times

Overall acceleration A ~ O(N/ny) 10075 Clock FMet/ 0 Clock FMet/~ g © Clock Fet/ 0
¢ Met 6| ¢ Met e ? ¢ Met . ]
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Performance analysis

Integrated autocorrelation times

Overall acceleration A ~ O(N /ny) L0075 Clock FMet/y 0 Clock FMet/A 8] O Clock FMet/y 0
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. . ]
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Performance analysis

Integrated autocorrelation times

Overall acceleration A ~ O(N /ny) L0075 Clock FMet/y 0 Clock FMet/A 8] O Clock FMet/y 0
¢ Met 6| ¢ Met e ? ¢ Met . ]
. B ]
> A complexity speedup O(N/C); g o ¢ o ° Lot
]
> BUt a Sma”er acceptance rate S|OWing—dOWh, 1 8 ¢ Mean-field Ising Mean-field XY Mean-field Heisenberg
Y = PMetro / PFact 16 256 1096 16 256 4096 16 256 4096
N N N
The energy extensivity nature directly controls the performance!
> Inyx Y, [AE| - |5, A > Colnpa/In proc~ Y, max |AE ]/ T, |AE
» Strict extensivity: > Sub-extensivity: » Marginal extensivity:
m Y. max|AE|~ m Y. max|AE|~O(N%) m > . max|AE]|~O(InN)
0(1) B A~O(N®),0 < k<1 = O(N/(InN)*)<A<O(N/InN)
m A~O(N) m Box ~ N/N* m Box~In N can be necessary
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Applications: 1D long-range Ising spin glass

> H = —c(N) Zi<j %S'SJ
> S,'J' ==+1

> c(N)2 =31 ()
> =1

» o > 1: Strict extensivity:
m Y . max|AE| ~ O(1)
m Box =2
m A~ O(N)

o 7 o ' --N
Complexity C L7 | Accderation A N -
10000} 3D [singSG - 1D Ising 5G e oz20
1000} e » %"t ro=12
,,/ -'.“ -:.-: -: +0=11
100+ ,,’..:4' . _:‘.::."Ag=1lo
o e 3 1 A‘:: DQ.::A | vo=09
10 Jsdaeddo MR I I
ISR EEREEEEEERE; fi8ss 236 e] «0=08
1 1RERRES -0=075
8 128 2048 327688 128 2048 32768
N N
> o < 1: Sub-extensivity: » o = 1: Marginal extensivity:

B Y max|AE]| ~ O(N'™7)

m Box ~ NA1=9)

m A~ O(N7%)

m > . max|AE]| ~ O(InN)
m Box=1InN
m A~ O(N/(In N)2)
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E
How to propose moves which can overpass high barriers?
» Parallel tempering » Umbrella sampling
» Population Monte Carlo » Adaptive Monte Carlo
» Overrelaxation method » and much more

Generative models: Normalizing flows

> Learn an invertible mapping x ~ 7 <> z ~ v (typically v

Gaussian)
i i i i A
hlgh dlmen5|ona| |ntegra| verage over Generate x~7(x)
fQ 7(dx)f(x — random X;

(dx)ocexp( BE(x))dx =1 Z, L 6(x;) rand(0,1) — 7
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Normalizing flows (Rezende et al (2015), Kingma et al (2016))

Invertible mapping f
> f(x,0)==z
> Py(z) = n(f1(2))det Jp-1|
> P,(x) =wv(f(x))|det Jf|
» Typically Kullback-Leibler divergence

Find invertible transformation with computable Jacobian?
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Key points

Boltzmann generators

> Real NVP architecture (invertibility, computable Jacobian) (Dinh et al (2017))
» Use of Boltzmann distribution (Noé et al (2019))

m 7 is known, used during training
m Samples obtained from latent space (z — x) can be unbiased by importance sampling
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Invertible block

» Real NVP architecture (invertibility, computable Jacobian) (Dinh et al (2017))

Coordinates divided into two parts, S12 and Ty are (non-invertible) networks

Forward

{ =%
¥o = X2 © exp(S12(X1 )) + T12(

><1

Inverse

o]
900

y2 — Ti2(3; 6) ) ® exp(—S12(y1; 6))

><1 ><1
I
AK
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Invertible block

» Real NVP architecture (invertibility, computable Jacobian) (Dinh et al (2017))

(Plot from T. Guyon)
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Importance sampling

» Use of Boltzmann distribution (No¢ et al (2019))

Importance sampling : SMNNEVIYY SN,
A R Y R
o # ”
. NX()?) . 11:,/ R 11:,1 RN
]E;’VMX [O(X)] :]E)_(,qu [ — O(X)] ewd |t 1444 ez |t 2444
ax(X) PYEVE NN - SN RPN
I BN — TN
\*:’- N Reweighting \':,- NS
Generated XY samples Exact results
Non-normalized weights :
Zsaml W()?)O()?) E()?) 1
Ex~ X = Z = with X) = — =22+ 2| Fe(R)|? — log Rer(X
sonx [O(X)] Nempie —50 Zsamp/es w(X) wi w(X) = exp T + 2” wz (X)) 0g Rez(X)
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Applications to 2d XY Spins (Ongoing work with T. Guyon, A. Guillin)

SNN KA A ay £EECTIIN NNV VAL G TR
AT N WAL (RN
PODENCCERITTAZE N e el § { S TR

4 X VYA arad Sraihw~s~ AXNXZ VP VY
“afp ANNRR NNARTO Ly AAAINXN Wxwel XV ¥
AAAS BRSSP E R X 3 S N
,, \\ \\\*-”Iﬁ M T YAV N ‘\“‘4—’,,
1R R RSN S 7 A4 TN NS
SLLP ALY NANTHAE DA~~~ MANWTLY
TITEIIT AaaNy TTTUTIT e A
SYZ M A VEEEONNY T PR FF AR
NS A 772 S AR AR S O
\\\~"’/ 5114""\\ s.\.§!t5.ln /”’*\xb

(Plot from T. Guyon)
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Applications to 2d XY Spins (Ongoing work with T. Guyon, A. Guillin)

[ Validation samples
[ Boltzmann generator

antivortex-antivortex

vortex-antivortex vortex-vortex

1.0
> 0.50 1 0.50
[
g 0.5
g 0.25 1 0.25
frs

0.0 T T T + 0.00 T T T + 0.00 T T : -

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Distance to nearest neighbour

Distance to nearest neighbour Distance to nearest neighbour

The network has learned the
attraction behaviour between
vortices and anti-vortices.

The repulsion is underestimated.
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Applications to 2d XY Spins (Ongoing work with T. Guyon, A. Guillin)

Energy per spin distribution

5 [ Validation samples
[ Boltzmann generator 0
4
N -20
2
S3
s s %
) g
]
1
-80
0
-15 -1.0 -0.5 0.0 ~100
J
~7B2;cos(6i=-6) “i5 -10 -05 00
Energy E(Fx(2))
Challenges

» Fine tuning to avoid divergence at the importance sampling step

» Could not discuss: Angles? Mode collapse?
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Particles: S. Kapfer, W. Krauth
PDMP: A. Monemvassitis, A. Guillin

Polymer: T. A. Kampmann, J.
Kierfeld

Upgrading dynamics by non-reversibility obtained by exploiting global symmetries (discrete
or continuous).

Trade-off between efficient exploration and ergodicity? Quantitative theoretical analysis?
General implementation?

Complexity reduction in standard MCMC scheme by factorizing interaction terms.

Dealing with energy extensivity and strong frustration? Limit for computational
complexity reduction?

Non-local moves by normalizing flows

Ergodic training set? Fine tuning? Mode collapse? Hard-core potentials?

Bayesian inference: A. Durmus
Complexity: Y. Deng, X. Tan

Normalizing flows: T. Guyon, V.
Souveton, A. Guillin, G. Lavaux, J.
Jasche
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Thank you for your attention!
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