Recent developments in sampling methods

Manon Michel

CNRS, Laboratoire de mathématiques Blaise Pascal, Université Clermont-Auvergne

April, 4th 2022, IXXI, Lyon
Machine Learning and sampling methods for climate and physics

Particles: S. Kapfer (Erlangen), W. Krauth (ENS)
PDMP: A. Monemvassitis, A. Guillin (UCA)
Polymer: T. A. Kampmann, J. Kierfeld (Dortmund)

Bayesian inference: A. Durmus (ENS Saclay)
Complexity: Y. Deng, X. Tan (Hefei)
Normalizing flows: T. Guyon, V. Souveton, A. Guillin (UCA), G. Lavaux (IAP), J. Jasche (SU)

しの
université
Clermont
Auvergne

Outline

Sampling and the Monte carlo method
Upgrading the dynamics
Reducing the computational complexity
Producing non-local moves

In inference

Optimization

$$
x \longrightarrow f(x, \theta) \longrightarrow y
$$

Find best $\theta_{\text {min }}$ minimizing some score function/maximizing the likelihood.

Bayesian approach: from deterministic to probabilistic approach

Look at the full probability distribution $P(\theta \mid(x, y)) \propto P((x, y) \mid \theta) \cdot P_{\text {prior }}(\theta)$

- Full information, uncertainty quantification
- Model flexibility (hierarchical, $P(\theta)=P(y \mid \theta) P(\theta \mid \gamma) P(\gamma)$)
- Analogy with energy landscapes in statistical physics

In inference

Optimization

$$
x \longrightarrow f(x, \theta) \longrightarrow y
$$

Find best $\theta_{\text {min }}$ minimizing some score function/maximizing the likelihood.

Bayesian approach: from deterministic to probabilistic approach

Look at the full probability distribution $P(\theta \mid(x, y)) \propto P((x, y) \mid \theta) \cdot P_{\text {prior }}(\theta)$

- Full information, uncertainty quantification
- Model flexibility (hierarchical, $P(\theta)=P(y \mid \theta) P(\theta \mid \gamma) P(\gamma))$
- Analogy with energy landscapes in statistical physics
\rightarrow Description by high-dimensional integrals!

Sampling by Markov-chain Monte Carlo

Goal

$$
\begin{gathered}
\text { high-dimensional integral } \\
\langle\theta\rangle=\int_{\Omega} \pi(\mathrm{d} x) \theta(x) \\
\pi(\mathrm{d} x) \propto \exp (-\beta E(x)) \mathrm{d} x
\end{gathered} \quad \Longleftrightarrow \quad \begin{gathered}
\text { Average over } \\
\text { random } x_{i} \\
\bar{\theta}=\frac{1}{N} \sum_{i=1}^{N} \theta\left(x_{i}\right)
\end{gathered}
$$

Sampling by Markov-chain Monte Carlo

Goal

$$
\begin{gathered}
\begin{array}{c}
\text { high-dimensional integral } \\
\langle\theta\rangle=\int_{\Omega} \pi(\mathrm{d} x) \theta(x) \\
\pi(\mathrm{d} x) \propto \exp (-\beta E(x)) \mathrm{d} x
\end{array}
\end{gathered} \Longleftrightarrow \begin{gathered}
\text { Average over } \\
\text { random } x_{i} \\
\bar{\theta}=\frac{1}{N} \sum_{i=1}^{N} \theta\left(x_{i}\right)
\end{gathered} \quad \Longleftrightarrow \quad \begin{gathered}
\text { Generate } x \sim \pi(x) \\
\operatorname{rand}(0,1) \rightarrow \pi
\end{gathered}
$$

Markov process $K(\cdot)$

Sampling by Markov-chain Monte Carlo

Goal

$$
\begin{array}{ccc}
\begin{array}{c}
\text { high-dimensional integral } \\
\langle\theta\rangle=\int_{\Omega} \pi(\mathrm{d} x) \theta(x) \\
\pi(\mathrm{d} x) \propto \exp (-\beta E(x)) \mathrm{d} x
\end{array} & \Longleftrightarrow & \begin{array}{c}
\text { Average over } \\
\text { random } x_{i} \\
\bar{\theta}=\frac{1}{N} \sum_{i=1}^{N} \theta\left(x_{i}\right)
\end{array}
\end{array} \Longleftrightarrow \Longleftrightarrow \begin{gathered}
\text { Generate } x \sim \pi(x) \\
\operatorname{rand}(0,1) \rightarrow \pi
\end{gathered}
$$

Markov process $K(\cdot)$

Master equation

$$
\frac{\mathrm{d} P(\mathrm{~d} x, t)}{\mathrm{d} t}=\int_{\Omega}\left(P\left(\mathrm{~d} x^{\prime}, t\right) K\left(x^{\prime}, \mathrm{d} x\right)-P(\mathrm{~d} x, t) K\left(x, \mathrm{~d} x^{\prime}\right)\right)
$$

Sampling by Markov-chain Monte Carlo

Goal

$$
\begin{gathered}
\begin{array}{c}
\text { high-dimensional integral } \\
\langle\theta\rangle=\int_{\Omega} \pi(\mathrm{d} x) \theta(x) \\
\pi(\mathrm{d} x) \propto \exp (-\beta E(x)) \mathrm{d} x
\end{array}
\end{gathered} \Longleftrightarrow \begin{gathered}
\text { Average over } \\
\text { random } x_{i} \\
\bar{\theta}=\frac{1}{N} \sum_{i=1}^{N} \theta\left(x_{i}\right)
\end{gathered} \quad \Longleftrightarrow \quad \begin{gathered}
\text { Generate } x \sim \pi(x) \\
\operatorname{rand}(0,1) \rightarrow \pi
\end{gathered}
$$

Markov process $K(\cdot)$

Master equation

$$
\begin{aligned}
& \frac{\mathrm{d} P(\mathrm{~d} x, t)}{\mathrm{d} t}=\int_{\Omega}\left(P\left(\mathrm{~d} x^{\prime}, t\right) K\left(x^{\prime}, \mathrm{d} x\right)-P(\mathrm{~d} x, t) K\left(x, \mathrm{~d} x^{\prime}\right)\right) \\
& \frac{\mathrm{d} \pi(\mathrm{~d} x)}{\mathrm{d} t}=\underbrace{0=\int_{\Omega}\left(\pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right)-\pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right)\right)}_{\text {Global balance }}
\end{aligned}
$$

And π unique by ergodicity.

Sampling by Markov-chain Monte Carlo

Markov process
Master equation

Detailed balance $\pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right)=\pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right)$

Sampling by Markov-chain Monte Carlo

Markov process
Master equation

$$
\begin{aligned}
& \frac{\mathrm{d} P(\mathrm{~d} x, t)}{\mathrm{d} t}=\int_{\Omega}\left(P\left(\mathrm{~d} x^{\prime}, t\right) K\left(x^{\prime}, \mathrm{d} x\right)-P(\mathrm{~d} x, t) K\left(x, \mathrm{~d} x^{\prime}\right)\right) \\
& \frac{\mathrm{d} \pi(\mathrm{~d} x)}{\mathrm{d} t}=\underbrace{0=\int_{\Omega}\left(\pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right)-\pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right)\right)}_{\text {Global balance }}
\end{aligned}
$$

And π unique by ergodicity.
Detailed balance $\pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right)=\pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right)$
$K\left(x, \mathrm{~d} x^{\prime}\right)=q\left(x, x^{\prime}\right) a\left(x, x^{\prime}\right) \mathrm{d} x^{\prime}$
$+\left(1-\int_{\Omega} q(x, y) a(x, y) \mathrm{d} y\right) \delta_{x=x^{\prime}}$
$a\left(x, x^{\prime}\right)=\min \left(1, \frac{q\left(x^{\prime}, x\right)}{q\left(x, x^{\prime}\right)} \exp \left(-\beta \Delta E_{x x^{\prime}}\right)\right)$
Hastings-Metropolis algorithm

Rejection (Metropolis et al (1953), Hastings (1977))

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

Edward Teller,* Departmeni of Physics, Unizersily of Chicago, Chicago, Illinois (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

Metropolis algorithm

Diffusive dynamics

- Correlated sample: $\sigma^{2}(\bar{\Theta}) \propto \tau(\Theta)$

$$
C_{\Theta}(t)=\frac{\left\langle\Theta\left(t^{\prime}+t\right) \Theta\left(t^{\prime}\right)\right\rangle-\left\langle\Theta^{\prime}\right\rangle}{\left\langle\Theta^{2}\right\rangle-\langle\Theta\rangle^{2}}
$$

- Around 2nd order phase transition $\tau \propto \xi^{z} \propto L^{z}$ $C_{\Theta}(t) \sim \exp (-t / \tau)$

Challenges

$$
K\left(x, \mathrm{~d} x^{\prime}\right)=q\left(x, x^{\prime}\right) a\left(x, x^{\prime}\right) \mathrm{d} x^{\prime}+\left(1-\int_{\Omega} q(x, y) a(x, y) \mathrm{d} y\right) \delta_{x=x^{\prime}}
$$

Efficient dynamics over the state space?

Challenges

$$
K\left(x, \mathrm{~d} x^{\prime}\right)=q\left(x, x^{\prime}\right) a\left(x, x^{\prime}\right) \mathrm{d} x^{\prime}+\left(1-\int_{\Omega} q(x, y) a(x, y) \mathrm{d} y\right) \delta_{x=x^{\prime}}
$$

Efficient dynamics over the state space?

Computational complexity of each move?

$$
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Computation } \\
\text { of } N \text { terms }
\end{array} \\
\hline \begin{array}{l}
\text { Only computation } \\
\text { of a few terms? }
\end{array} \\
\hline
\end{array}
$$

Challenges

$$
K\left(x, \mathrm{~d} x^{\prime}\right)=q\left(x, x^{\prime}\right) a\left(x, x^{\prime}\right) \mathrm{d} x^{\prime}+\left(1-\int_{\Omega} q(x, y) a(x, y) \mathrm{d} y\right) \delta_{x=x^{\prime}}
$$

Efficient dynamics over the state space?

High energy barrier and non-local moves?

Computational complexity of each move?

$$
\begin{array}{|c|}
\hline \begin{array}{c}
\text { Computation } \\
\text { of } N \text { terms }
\end{array}
\end{array} \rightarrow \begin{array}{|}
\begin{array}{c}
\text { Only computation } \\
\text { of a few terms? }
\end{array} \\
\hline
\end{array}
$$

Outline

Sampling and the Monte carlo method
Upgrading the dynamics
Reducing the computational complexity
Producing non-local moves

Outline

Sampling and the Monte carlo method

Upgrading the dynamics
Non-reversibility, Event-chain Monte Carlo
Event-chain Monte Carlo
Piecewise deterministic Markov processes
Invariance through interplay of transport and direction changes
Replacing time reversibility by potential symmetries

Reducing the computational complexity

Producing non-local moves

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

Edward Teller,* Departmeni of Physics, Unizersily of Chicago, Chicago, Illinois (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

Metropolis algorithm

Diffusive dynamics

- Correlated sample: $\sigma^{2}(\bar{\Theta}) \propto \tau(\Theta)$

$$
C_{\Theta}(t)=\frac{\left\langle\Theta\left(t^{\prime}+t\right) \Theta\left(t^{\prime}\right)\right\rangle-\left\langle\Theta^{2}\right\rangle}{\left\langle\Theta^{2}\right\rangle-\langle\Theta\rangle^{2}}
$$

- Around 2nd order phase transition $\tau \propto \xi^{z} \propto L^{z}$ $C_{\Theta}(t) \sim \exp (-t / \tau)$

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Departmenl of Physics, Universily of Chicago, Chicago, Illinois
(Received March 6, 1953)

> A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

How to produce collective moves?

Metropolis algorithm

- Continuous state space. No discrete symmetry as for spin lattices to easily build global q (Cluster algorithms).
- With detailed balance in hard-core particle systems: symmetric proposal probabilities q are necessary for the scheme to be rejection-free.

Equation of State Calculations by Fast Computing Machines

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND
Edward Teller,* Departmenl of Physics, Universily of Chicago, Chicago, Illinois
(Received March 6, 1953)

> A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

How to produce collective moves?

Metropolis algorithm

- Continuous state space. No discrete symmetry as for spin lattices to easily build global q (Cluster algorithms).
- With detailed balance in hard-core particle systems: symmetric proposal probabilities q are necessary for the scheme to be rejection-free.
- Break DB: Non-reversibility?

Equation of State Calculations by Fast Computing Machines

Ntcholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, and Augusta H. Teller, Los Alamos Scienific Laboralory, Los Alamos, New Mexico

AND
Edward Teller,* Department of Physics, University of Chicago, Chicago, Illinois (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

Event-chain Monte Carlo

Bernard et al (2009)

Michel et al (2014), Kapfer et al (2015)

Metropolis algorithm (Metropolis et al. (1953))

- Acceptance through Metropolis filter. $\min \left(1, \prod_{i} \exp \left(-\beta \Delta E_{i}\right)\right)=$ $\exp \left(-\beta\left[\sum_{i} \Delta E_{i}\right]_{+}\right)$ Rejections
- Moves are:
- Randomly proposed
- Local
- Finite
- Detailed balance

Event-chain Monte Carlo

(Bernard et al (2009), Michel et al. (2014)))

- Direction change set by factorized Metropolis filter. $\prod_{i} \min \left(1, \exp \left(-\beta \Delta E_{i}\right)\right)=$ $\exp \left(-\sum_{i} \beta\left[\Delta E_{i}\right]_{+}\right)$

Rejection free

- Moves are:
- Set by additional variable
- Persistent on global scale
- Infinitesimal

- Global balance

Event-chain Monte Carlo

(Bernard et al (2009), Michel et al. (2014)))

- Direction change set by factorized Metropolis filter. $\prod_{i} \min \left(1, \exp \left(-\beta \Delta E_{i}\right)\right)=$ $\exp \left(-\sum_{i} \beta\left[\Delta E_{i}\right]_{+}\right)$

Rejection free

- Moves are:
- Set by additional variable
- Persistent on global scale
- Infinitesimal

ECMC for general potential?

> Reversibility $\pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right)$ $=\pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right)$ \rightarrow Rejection,
i.e. acceptance prob. (a)

$$
\begin{aligned}
& \text { Non-reversibility } \\
& \int_{x^{\prime}} \pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right) \\
& =\int_{x^{\prime}} \pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right) \\
& \rightarrow \text { Direction change, } \\
& \text { i.e. proposal prob. }(q)
\end{aligned}
$$

- How to upgrade to non-reversibility in general case? How to ensure global balance and ergodicity through only direction changes set by q ?
- Global balance

Event-chain Monte Carlo

 (Bernard et al (2009), Michel et al. (2014)))

- Direction change set by factorized Metropolis filter. $\prod_{i} \min \left(1, \exp \left(-\beta \Delta E_{i}\right)\right)=$ $\exp \left(-\sum_{i} \beta\left[\Delta E_{i}\right]_{+}\right)$

Rejection free

- Moves are:
- Set by additional variable
- Persistent on global scale
- Infinitesimal
- Global balance

ECMC for general potential?

> Reversibility $\pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right)$ $=\pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right)$ \rightarrow Rejection,
i.e. acceptance prob. (a)

$$
\begin{aligned}
& \text { Non-reversibility } \\
& \int_{x^{\prime}} \pi\left(\mathrm{d} x^{\prime}\right) K\left(x^{\prime}, \mathrm{d} x\right) \\
& =\int_{x^{\prime}} \pi(\mathrm{d} x) K\left(x, \mathrm{~d} x^{\prime}\right) \\
& \rightarrow \text { Direction change, } \\
& \text { i.e. proposal prob. }(q)
\end{aligned}
$$

- How to upgrade to non-reversibility in general case? How to ensure global balance and ergodicity through only direction changes set by q ?
- Global symmetry hunt
- Piecewise deterministic Markov process

General upgrading of the dynamics?

Sampling $x \sim \pi(\alpha \exp (-E(x)), E: \Omega \rightarrow \mathbb{R}$ the potential) through Markov kernel $K\left(x, \mathrm{~d} x^{\prime}\right)=q\left(x, x^{\prime}\right) a\left(x, x^{\prime}\right) \mathrm{d} x^{\prime}+\left(1-\int_{\Omega} q(x, y) a(x, y) \mathrm{d} y\right) \delta_{x=x^{\prime}}$

State space extension $\Omega \rightarrow \Omega \times \mathcal{D}$ to set the proposal probabilities $\pi(x) \rightarrow \tilde{\pi}(x, e)=\pi(x) \times \mu(e), e \sim \operatorname{direction~(Careful!)~}$

Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition No rejection, only direction changes.
No back-and-forth along a fixed trajectory. No line partition

Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition No rejection, only direction changes.
No back-and-forth along a fixed trajectory.
No line partition
\rightarrow Piecewise deterministic Markov process

Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition No rejection, only direction changes.
No back-and-forth along a fixed trajectory.
No line partition
\rightarrow Piecewise deterministic Markov process
PDMP characterizing elements (Davis (1993), in MCMC: Bouchard-Côté et al (2018), Bierkens et al (2019))

- Differential flow $\left(\phi_{t}\right)_{t \geq 0}$
- Jump rate $\lambda(x, e)+\bar{\lambda}$
- Markov kernel Q (repel kernel)

Piecewise Deterministic Markov Process

Goal: Global symmetry, no state space partition No rejection, only direction changes.
No back-and-forth along a fixed trajectory.
No line partition
\rightarrow Piecewise deterministic Markov process
PDMP characterizing elements (Davis (1993), in MCMC: Bouchard-Côté et al (2018), Bierkens et al (2019))

- Differential flow $\left(\phi_{t}\right)_{t \geq 0}$
- Jump rate $\lambda(x, e)+\bar{\lambda}$
- Markov kernel Q (repel kernel)

Infinitesimal generator $\mathcal{A} f=\lim _{t \rightarrow 0} \frac{P_{t} f-f}{t}, D_{\phi} f(x, e)=\lim _{t \rightarrow 0} \frac{f\left(\phi_{t}(x, e)\right)-f(x, e)}{t}$

$$
\mathcal{A} f=\underbrace{D_{\phi} f(x, e)}_{\text {Transport }}+\underbrace{\lambda(x, e) \int_{\mathcal{D}}\left(f\left(x, e^{\prime}\right)-f(x, e)\right) Q\left((x, e), \mathrm{d} e^{\prime}\right)}_{\text {Events - Direction changes }}+\underbrace{\bar{\lambda} \int_{\mathcal{D}}\left(f\left(x, e^{\prime}\right)-f(x, e)\right) \mu\left(\mathrm{d} e^{\prime}\right)}_{\text {Refreshment }}
$$

Invariance: Transport compensated by the direction changes

Infinitesimal generator $\mathcal{A} f=\lim _{t \rightarrow 0} \frac{P_{t} f-f}{t}$

$$
\mathcal{A} f=\underbrace{D_{\phi} f(x, e)}_{\text {Transport }}+\underbrace{\lambda(x, e) \int_{\mathcal{D}}\left(f\left(x, e^{\prime}\right)-f(x, e)\right) Q\left((x, e), \mathrm{d} e^{\prime}\right)}_{\text {Events - Direction changes }}+\underbrace{\bar{\lambda} \int_{\mathcal{D}}\left(f\left(x, e^{\prime}\right)-f(x, e)\right) \mu\left(\mathrm{d} e^{\prime}\right)}_{\text {Refreshment }}
$$

Conditions for $\tilde{\pi}=\pi \times \mu$ invariant: $\int_{\Omega \times \mathcal{D}} \mathcal{A} f \mathrm{~d} \pi \mathrm{~d} \mu=0$

$$
\begin{aligned}
& \int_{\Omega \times \mathcal{D}} D_{\phi} f(x, e) \pi(\mathrm{d} x) \mu(\mathrm{d} e) \\
& =\int_{\Omega \times \mathcal{D}} \int_{\mathcal{D}} \lambda(x, e)\left(f\left(x, e^{\prime}\right)-f(x, e)\right) Q\left((x, e), \mathrm{d} e^{\prime}\right) \pi(\mathrm{d} x) \mu(\mathrm{d} e)
\end{aligned}
$$

Invariance: Transport compensated by the direction changes

Infinitesimal generator $\mathcal{A} f=\lim _{t \rightarrow 0} \frac{P_{t} f-f}{t}$

$$
\mathcal{A} f=\underbrace{D_{\phi} f(x, e)}_{\text {Transport }}+\underbrace{\lambda(x, e) \int_{\mathcal{D}}\left(f\left(x, e^{\prime}\right)-f(x, e)\right) Q\left((x, e), \mathrm{d} e^{\prime}\right)}_{\text {Events - Direction changes }}+\underbrace{\bar{\lambda} \int_{\mathcal{D}}\left(f\left(x, e^{\prime}\right)-f(x, e)\right) \mu\left(\mathrm{d} e^{\prime}\right)}_{\text {Refreshment }}
$$

Conditions for $\tilde{\pi}=\pi \times \mu$ invariant: $\int_{\Omega \times \mathcal{D}} \mathcal{A} f \mathrm{~d} \pi \mathrm{~d} \mu=0$

$$
\begin{aligned}
& \int_{\Omega \times \mathcal{D}} D_{\phi} f(x, e) \pi(\mathrm{d} x) \mu(\mathrm{d} e) \\
& =\int_{\Omega \times \mathcal{D}} \int_{\mathcal{D}} \lambda(x, e)\left(f\left(x, e^{\prime}\right)-f(x, e)\right) Q\left((x, e), \mathrm{d} e^{\prime}\right) \pi(\mathrm{d} x) \mu(\mathrm{d} e)
\end{aligned}
$$

With a flow along e, by integration by part, $(\pi(x) \propto \exp (-E(x)))$
$\underbrace{\int_{\mathcal{D}}\langle\nabla \mathbf{E}(\mathbf{x}),-\mathbf{e}\rangle_{+} f(x, e) \boldsymbol{\mu}(\mathbf{d} \mathbf{e})}=\underbrace{\int_{\mathcal{D}} \int_{\mathcal{D}}\langle\nabla \mathbf{E}(\mathbf{x}), \mathbf{e}\rangle_{+} f\left(x, e^{\prime}\right) \mathbf{Q}\left(\mathbf{e} \rightarrow \mathbf{e}^{\prime}\right) \boldsymbol{\mu}(\mathbf{d} \mathbf{e})}$

Event-chain Monte Carlo/PDMP-sampling in a few words

With a flow along e, by integration by part, $(\pi(x) \propto \exp (-E(x)))$ $\underbrace{\int_{\mathcal{D}}\langle\nabla \mathbf{E}(\mathbf{x}),-\mathbf{e}\rangle_{+} f(x, e) \boldsymbol{\mu}(\mathbf{d e})}_{\text {brought by transport }}=\underbrace{\int_{\mathcal{D}} \int_{\mathcal{D}}\langle\nabla \mathbf{E}(\mathbf{x}), \mathbf{e}\rangle_{+} f\left(x, e^{\prime}\right) \mathbf{Q}\left(\mathbf{e} \rightarrow \mathbf{e}^{\prime}\right) \boldsymbol{\mu}(\mathbf{d e})}_{\text {redistributed by direction change }}$

Main idea
Find some symmetries on the way the energy change in order to get some balance

$$
\begin{aligned}
\sum_{\Delta}\left\langle\nabla_{\Delta} E, e\right\rangle=0 & \rightarrow \sum_{\Delta}\left\langle\nabla_{\Delta} E, e\right\rangle=\sum_{\substack{\Delta \\
\left\langle\nabla_{\Delta} E, e\right\rangle>0}}-\left\langle\nabla_{\Delta} E, e\right\rangle \\
& \rightarrow \sum_{\Delta}\left\langle\nabla_{\Delta} \mathbf{E}, \mathbf{e}\right\rangle_{+}=\sum_{\Delta}\left\langle\nabla_{\Delta} \mathbf{E},-\mathbf{e}\right\rangle_{+}
\end{aligned}
$$

Chasing down symmetries

Pairwise interactions

Exploitation of mirror
symmetry through factorization
$\nabla_{x_{i}} E_{i j}(x)=-\nabla_{x_{j}} E_{i j}(x)$
(i.e. $\operatorname{div} E_{i j}=0$)

Deterministic kernel Q

Michel et al (2014)

Chasing down symmetries

Pairwise interactions

Exploitation of mirror symmetry through factorization $\nabla_{x_{i}} E_{i j}(x)=-\nabla_{x_{j}} E_{i j}(x)$ (i.e. $\operatorname{div} E_{i j}=0$)

Deterministic kernel Q
n-body interactions

Exploitation of translational invariance $\operatorname{div} \mathbf{E}=\mathbf{0}$
$\rightarrow \sum_{i_{k}}\left\langle\nabla x_{i_{k}} E_{i_{1} \cdots_{n}}, v\right\rangle=0$
$\rightarrow \sum_{i_{k}}\left\langle\nabla x_{i_{k}} E_{i_{1} \ldots i_{n}}, v\right\rangle_{+}=$
$\sum_{i_{k}}\left\langle\nabla x_{i_{k}} E_{i_{1} \ldots i_{n}},-v\right\rangle_{+}$
Non-deterministic kernel Q
Harland et al (2017)

Chasing down symmetries

Pairwise interactions

Exploitation of mirror symmetry through factorization $\nabla_{x_{i}} E_{i j}(x)=-\nabla_{x_{j}} E_{i j}(x)$
(i.e. $\operatorname{div} E_{i j}=0$)

Deterministic kernel Q
n-body interactions

Exploitation of translational invariance $\operatorname{div} \mathbf{E}=\mathbf{0}$
$\rightarrow \sum_{i_{k}}\left\langle\nabla x_{i_{k}} E_{i_{1} \cdots n}, v\right\rangle=0$
In the general case?
$\rightarrow \sum_{i_{k}}\left\langle\nabla x_{i_{k}} E_{i_{1} \ldots i_{n}}, v\right\rangle_{+}=$
$\sum_{i_{k}}\left\langle\nabla x_{i_{k}} E_{i_{1} \ldots i_{n}},-v\right\rangle_{+}$
Non-deterministic kernel Q
Harland et al (2017)

General case: Exploiting rotational invariance

Deterministic kernel Q

No a priori symmetry, but if reflection or flip: $\nabla E \cdot e_{\text {in }}=-\nabla E \cdot e_{\text {out }}$
$Q\left(e_{\text {in }} \rightarrow e_{\text {out }}\right)=\delta\left(e_{\text {out }}-R_{\nabla E(x)}\left(e_{\text {int }}\right)\right)$
(Peters et al (2012), Michel et al (2014), Bouchard-Côté et al (2018), Bierkens et al (2019))

General case: Exploiting rotational invariance

Deterministic kernel Q

No a priori symmetry, but if reflection or flip:
$\nabla E \cdot e_{\text {in }}=-\nabla E \cdot e_{\text {out }}$
$Q\left(e_{\text {in }} \rightarrow e_{\text {out }}\right)=\delta\left(e_{\text {out }}-R_{\nabla E(x)}\left(e_{\text {int }}\right)\right)$
(Peters et al (2012), Michel et al (2014), Bouchard-Côté et al (2018), Bierkens et al (2019))

Rotational invariance around ∇E :
$\int\langle\nabla \mathbf{E}(\mathbf{x}), \mathbf{e}\rangle \mu(\mathrm{d} \mathbf{e})=\mathbf{0} \rightarrow \int\langle\nabla \mathrm{E}(\mathbf{x}), \mathbf{e}\rangle_{+} \boldsymbol{\mu}(\mathrm{d} \mathbf{e})=\int\langle\nabla \mathrm{E}(\mathbf{x}),-\mathbf{e}\rangle_{+} \boldsymbol{\mu}(\mathrm{d} \mathbf{e})$
$\mu^{e v e n t}(\mathrm{~d} e)=\langle\nabla E(x),-e\rangle_{+} \mu(\mathrm{de}) / \int\langle\nabla E(x),-e\rangle_{+} \mu(\mathrm{d} e)$ should be conserved by Q !

- Independent pick of new directions $Q\left(e_{\text {in }} \rightarrow e_{\text {out }}\right) \propto\left\langle\nabla E(x),-e_{\text {out }}\right\rangle_{+}$
- Non-reversible in E

Illustration - Anisotropic Gaussian

Gaussian distribution $E=\sum_{i} x_{i}^{2} /\left(2 \sigma_{i}^{2}\right), \sigma_{i} \in[1,1000]$ - 400 dimensions (section of the dimensions with the largest variances)

Metropolis
Reversibility and Local symmetry

Reversibility and kinetic energy

Reflexion
Irreversibility and Local Symmetry

Direct pick
Irreversibility and Global Symmetry

Outline

Sampling and the Monte carlo method

Upgrading the dynamics

Reducing the computational complexity
Computational complexity in ECMC/PDMC
Complexity reduction for local MC algorithms
Clock MC - Applications

Producing non-local moves

What about Complexity?

Metropolis algorithm:
N interaction terms

$$
\Delta E=\sum_{i=1}^{N} \Delta E_{i}
$$

$$
p(i \rightarrow j)=\min (1, \exp (-\beta \Delta E))
$$

Complexity reduction for irreversible MC algorithms
Factorized transitions: superposition of Poisson process (PP) Direction changes ruled by a Poisson process of rate $\lambda=\sum_{i=1}^{N} \lambda_{i}$, $\lambda_{i}=\max \left(0, d E_{i}\right)$.

Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP) Direction changes ruled by a Poisson process of rate $\lambda=\sum_{i=1}^{N} \lambda_{i}$, $\lambda_{i}=\max \left(0, d E_{i}\right)$.

Complexity reduction by thinning (Lewis and Schedler (1979))
Consider the bound $\lambda^{\text {Bound }} \geq \lambda$
Superposition of PP: $\lambda^{\text {Bound }}=\lambda+\lambda^{\text {Fake }}$

Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP) Direction changes ruled by a Poisson process of rate $\lambda=\sum_{i=1}^{N} \lambda_{i}$, $\lambda_{i}=\max \left(0, d E_{i}\right)$.

Complexity reduction by thinning (Lewis and Schedler (1979))
Consider the bound $\lambda^{\text {Bound }} \geq \lambda$
Superposition of PP: $\lambda^{\text {Bound }}=\lambda+\lambda^{\text {Fake }}$

True event with probability $\lambda / \lambda^{\text {Bound }}$

Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP)
Direction changes ruled by a Poisson process of rate $\lambda=\sum_{i=1}^{N} \lambda_{i}$, $\lambda_{i}=\max \left(0, d E_{i}\right)$.

Complexity reduction by thinning (Lewis and Schedler (1979))
Consider the bound $\lambda^{\text {Bound }} \geq \lambda$ Superposition of PP: $\lambda^{\text {Bound }}=\lambda+\lambda^{\text {Fake }}$

Bound, $\lambda^{\text {Bound }}$
Fake, $\lambda^{\text {Fake }}$
True, λ
True event with probability $\lambda / \lambda^{\text {Bound }}$

Writing now $\lambda^{\text {Bound }}=\sum_{i} \lambda_{i}^{\text {Bound }}, \lambda_{i}^{\text {Bound }} \geq \lambda_{i}, \forall i$
And $\lambda_{i}^{\text {Bound }}=\lambda_{i}+\lambda_{i}^{\text {Fake }}$

Pick a potentially rejecting term i with $\lambda_{i}^{\text {Bound }} / \lambda^{\text {Bound }}$ and resample a true event with $\lambda_{i} / \lambda_{i}^{\text {Bound }}$.

Complexity reduction for irreversible MC algorithms

Factorized transitions: superposition of Poisson process (PP)
Direction changes ruled by a Poisson process of rate $\lambda=\sum_{i=1}^{N} \lambda_{i}$, $\lambda_{i}=\max \left(0, d E_{i}\right)$.

Complexity reduction by thinning (Lewis and Schedler (1979))
Consider the bound $\lambda^{\text {Bound }} \geq \lambda$ Superposition of PP: $\lambda^{\text {Bound }}=\lambda+\lambda^{\text {Fake }}$

Bound, $\lambda^{\text {Bound }}$
Fake, $\lambda^{\text {Fake }}$
True, λ
True event with probability $\lambda / \lambda^{\text {Bound }}$ Logistic regression: Bouchard-Côté et al (2018); Soft spheres: Kapfer et al (2016)

Writing now $\lambda^{\text {Bound }}=\sum_{i} \lambda_{i}^{\text {Bound }}, \lambda_{i}^{\text {Bound }} \geq \lambda_{i}, \forall i$
And $\lambda_{i}^{\text {Bound }}=\lambda_{i}+\lambda_{i}^{\text {Fake }}$

Pick a potentially rejecting term i with $\lambda_{i}^{\text {Bound }} / \lambda^{\text {Bound }}$ and resample a true event with $\lambda_{i} / \lambda_{i}^{\text {Bound }}$.

Clock Monte Carlo method (Michel et al (2019))

Clock Monte Carlo method (Michel et al (2019))

Factorized filter and its consensus rule
sampling rejection \leftrightarrow sampling first factor rejecting
$P_{\text {rej }}=1-P_{\text {fac }}=\sum_{i}\left(1-p_{i}\right) \prod_{j<i} p_{j}$

Clock Monte Carlo method (Michel et al (2019))

Factorized filter and its consensus rule
sampling rejection \leftrightarrow sampling first factor rejecting

$$
P_{\mathrm{rej}}=1-P_{\mathrm{fac}}=\sum_{i}\left(1-p_{i}\right) \prod_{j<i} p_{j}
$$

Clock Monte Carlo method (Michel et al (2019))

Factorized filter and its consensus rule sampling rejection \leftrightarrow sampling first factor rejecting

N-step Bernoulli process!

$$
P_{\mathrm{rej}}=1-P_{\mathrm{fac}}=\sum_{i}\left(1-p_{i}\right) \prod_{j<i} p_{j}
$$

Clock Monte Carlo method

Complexity reduction

- Consider a bound Bernoulli process $p_{B}=\prod p_{B, i}$, with $\forall i, p_{i} \geq p_{B, i}$
- $P_{\text {rej }}(i)=p_{i}^{R} \prod_{j<i}\left(p_{j}^{A_{1}}+p_{j}^{A_{2}}\right)$
- Sampling a clock is replaced by the sampling of a random path of successive events $\left(A_{1}\right)$ or $\left(A_{2}\right)$ until a true rejection (R) is sampled or the path is of
 length N.
- Given configuration-independent bounds, successive bound rejections sampled in $O(1)$.
- Complexity $\mathcal{C}=$ number of attempted bound rejections $\sim \mathrm{O}\left(\ln p_{B} / \ln p_{F a c}\right), \sim 1$ if p_{B} and $p_{\text {Fac }}$ scale with N similarly.
- Long-range cluster algorithms (Luijten et al (1995), Fukui et al (2008)): effectively uses a factorized filter.

Performance analysis

Overall acceleration $\mathcal{A} \sim \mathrm{O}(N / \mathcal{C} \gamma)$

- A complexity speedup $O(N / C)$;
- But a smaller acceptance rate slowing-down, $\gamma=p_{\text {Metro }} / p_{\text {Fact }}$

Integrated autocorrelation times

Performance analysis

Integrated autocorrelation times

Overall acceleration $\mathcal{A} \sim \mathrm{O}(N / \mathcal{C} \gamma)$

- A complexity speedup $O(N / C)$;
- But a smaller acceptance rate slowing-down, $\gamma=p_{\text {Metro }} / p_{\text {Fact }}$

The energy extensivity nature directly controls the performance!
$-\ln \gamma \propto \sum_{i}\left|\Delta E_{i}\right|-\left|\sum_{i} \Delta E_{i}\right|$
$-\mathcal{C} \sim \ln p_{B} / \ln p_{\mathrm{Fac}} \sim \sum_{i} \max \left|\Delta E_{i}\right| / \sum_{i}\left|\Delta E_{i}\right|$

Performance analysis

Integrated autocorrelation times

Overall acceleration $\mathcal{A} \sim \mathrm{O}(N / \mathcal{C} \gamma)$

- A complexity speedup $O(N / C)$;
- But a smaller acceptance rate slowing-down, $\gamma=p_{\text {Metro }} / p_{\text {Fact }}$

The energy extensivity nature directly controls the performance!
$-\ln \gamma \propto \sum_{i}\left|\Delta E_{i}\right|-\left|\sum_{i} \Delta E_{i}\right|$
$-\mathcal{C} \sim \ln p_{B} / \ln p_{\mathrm{Fac}} \sim \sum_{i} \max \left|\Delta E_{i}\right| / \sum_{i}\left|\Delta E_{i}\right|$

- Strict extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim$ $\mathrm{O}(1)$
- $\mathcal{A} \sim \mathrm{O}(N)$

Performance analysis

Integrated autocorrelation times

Overall acceleration $\mathcal{A} \sim \mathrm{O}(N / \mathcal{C} \gamma)$

- A complexity speedup $O(N / C)$;
- But a smaller acceptance rate slowing-down, $\gamma=p_{\text {Metro }} / p_{\text {Fact }}$

The energy extensivity nature directly controls the performance!
$-\ln \gamma \propto \sum_{i}\left|\Delta E_{i}\right|-\left|\sum_{i} \Delta E_{i}\right| \quad \mathcal{C} \sim \ln p_{B} / \ln p_{\mathrm{Fac}} \sim \sum_{i} \max \left|\Delta E_{i}\right| / \sum_{i}\left|\Delta E_{i}\right|$

- Strict extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim$ $\mathrm{O}(1)$
- $\mathcal{A} \sim \mathrm{O}(N)$
- Sub-extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim \mathrm{O}\left(N^{\alpha}\right)$
- $\mathcal{A} \sim \mathrm{O}\left(N^{\kappa}\right), 0 \leq \kappa<1$
- Box $\sim N / N^{\omega}$

Performance analysis

Integrated autocorrelation times

Overall acceleration $\mathcal{A} \sim \mathrm{O}(N / \mathcal{C} \gamma)$

- A complexity speedup $\mathrm{O}(N / \mathcal{C})$;
- But a smaller acceptance rate slowing-down, $\gamma=p_{\text {Metro }} / p_{\text {Fact }}$

The energy extensivity nature directly controls the performance!
$-\ln \gamma \propto \sum_{i}\left|\Delta E_{i}\right|-\left|\sum_{i} \Delta E_{i}\right|$
$-\mathcal{C} \sim \ln p_{B} / \ln p_{\mathrm{Fac}} \sim \sum_{i} \max \left|\Delta E_{i}\right| / \sum_{i}\left|\Delta E_{i}\right|$

- Strict extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim$ $\mathrm{O}(1)$
- $\mathcal{A} \sim \mathrm{O}(N)$
- Sub-extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim \mathrm{O}\left(N^{\alpha}\right)$
- $\mathcal{A} \sim \mathrm{O}\left(N^{\kappa}\right), 0 \leq \kappa<1$
- Box $\sim N / N^{\omega}$
- Marginal extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim \mathrm{O}(\ln N)$
- $\mathrm{O}\left(N /(\ln N)^{2}\right) \leq \mathcal{A} \leq \mathrm{O}(N / \ln N)$
- Box $\sim \ln N$ can be necessary

Applications: 1D long-range Ising spin glass

- $\mathcal{H}=-c(N) \sum_{i<j} \frac{s_{i j}}{r_{i j}^{\sigma}} S_{i} S_{j}$
- $s_{i j}= \pm 1$
- $c(N)^{-2}=\sum_{j>1}\left\langle J_{1 j}^{2}\right\rangle$
- $\beta=1$

- $\sigma>1$: Strict extensivity:

■ $\sum_{i} \max \left|\Delta E_{i}\right| \sim \mathrm{O}(1)$

- Box $=2$
- $\mathcal{A} \sim \mathrm{O}(N)$
$\sigma<1$: Sub-extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim \mathrm{O}\left(N^{1-\sigma}\right)$
- $\sigma=1$: Marginal extensivity:
- $\sum_{i} \max \left|\Delta E_{i}\right| \sim \mathrm{O}(\ln N)$
- Box $\sim N^{2(1-\sigma)}$
- Box $=\ln N$
- $\mathcal{A} \sim \mathrm{O}\left(N^{\kappa}\right)$
- $\mathcal{A} \sim \mathrm{O}\left(N /(\ln N)^{2}\right)$

Outline

Sampling and the Monte carlo method

Upgrading the dynamics

Reducing the computational complexity

Producing non-local moves
Normalizing flows

How to propose moves which can overpass high barriers?

- Parallel tempering
- Population Monte Carlo
- Overrelaxation method
- Umbrella sampling
- Adaptive Monte Carlo
- and much more

Generative models: Normalizing flows

- Learn an invertible mapping $x \sim \pi \leftrightarrow z \sim \nu$ (typically ν Gaussian)

$$
\begin{gathered}
\begin{array}{c}
\text { high-dimensional integral } \\
\langle\theta\rangle=\int_{\Omega} \pi(\mathrm{d} x) \theta(x) \\
\pi(\mathrm{d} x) \propto \exp (-\beta E(x)) \mathrm{d} x
\end{array}
\end{gathered} \Longleftrightarrow \begin{gathered}
\text { Average over } \\
\text { random } x_{i} \\
\bar{\theta}=\frac{1}{N} \sum_{i=1}^{N} \theta\left(x_{i}\right)
\end{gathered} \quad \Longleftrightarrow \quad \begin{gathered}
\text { Generate } x \sim \pi(x) \\
\operatorname{rand}(0,1) \rightarrow \pi
\end{gathered}
$$

Normalizing flows (Rezende et al (2015), Kingma et al (2016))

Invertible mapping f

- $f(x, \theta)=z$
- $P_{x}(z)=\pi\left(f^{-1}(z)\right)\left|\operatorname{det} J_{f-1}\right|$
- $P_{z}(x)=\nu(f(x))\left|\operatorname{det} J_{f}\right|$
- Typically Kullback-Leibler divergence

Find invertible transformation with computable Jacobian?

Key points

Boltzmann generators

- Real NVP architecture (invertibility, computable Jacobian) (Dinh et al (2017))
- Use of Boltzmann distribution (Noé et al (2019))
- π is known, used during training
- Samples obtained from latent space $(z \rightarrow x)$ can be unbiased by importance sampling

Invertible block

- Real NVP architecture (invertibility, computable Jacobian) (Dinh et al (2017))

Coordinates divided into two parts, S_{12} and T_{12} are (non-invertible) networks.

Invertible block

- Real NVP architecture (invertibility, computable Jacobian) (Dinh et al (2017))

Importance sampling

- Use of Boltzmann distribution (Noé et al (2019))

Importance sampling :

$$
\mathbb{E}_{\vec{x} \sim \mu_{X}}[\mathcal{O}(\vec{x})]=\mathbb{E}_{\vec{x} \sim q_{X}}\left[\frac{\mu_{X}(\vec{x})}{q_{X}(\vec{x})} \mathcal{O}(\vec{x})\right]
$$

Non-normalized weights :

$$
\mathbb{E}_{\vec{x} \sim \mu_{X}}[\mathcal{O}(\vec{x})] \underset{N_{\text {samples }} \rightarrow \infty}{\rightarrow} \frac{\sum_{\text {samples }} w(\vec{x}) \mathcal{O}(\vec{x})}{\sum_{\text {samples }} w(\vec{x})} \quad \text { with } \quad w(\vec{x})=\exp \left(-\frac{E(\vec{x})}{T}+\frac{1}{2}\left\|F_{x z}(\vec{x})\right\|^{2}-\log R_{x z}(\vec{x})\right)
$$

Applications to $2 \mathrm{~d} X Y$ spins (Ongoing work with T. Guyon, A. Guillin)

Applications to 2d $X Y$ spins (Ongoing work with T. Guyon, A. Guillin)

The network has learned the attraction behaviour between vortices and anti-vortices.

The repulsion is underestimated.

Applications to $2 \mathbf{d} X Y$ spins (Ongoing work with T. Guyon, A. Guillin)

Challenges

- Fine tuning to avoid divergence at the importance sampling step
- Could not discuss: Angles? Mode collapse?

Conclusion

- Upgrading dynamics by non-reversibility obtained by exploiting global symmetries (discrete or continuous).
- Trade-off between efficient exploration and ergodicity? Quantitative theoretical analysis? General implementation?
- Complexity reduction in standard MCMC scheme by factorizing interaction terms.
- Dealing with energy extensivity and strong frustration? Limit for computational complexity reduction?
- Non-local moves by normalizing flows
- Ergodic training set? Fine tuning? Mode collapse? Hard-core potentials?

Particles: S. Kapfer, W. Krauth
PDMP: A. Monemvassitis, A. Guillin Polymer: T. A. Kampmann, J. Kierfeld

Bayesian inference: A. Durmus
Complexity: Y. Deng, X. Tan
Normalizing flows: T. Guyon, V. Souveton, A. Guillin, G. Lavaux, J. Jasche

Conclusion

- Upgrading dynamics by non-reversibility obtained by exploiting global symmetries (discrete or continuous).
- Trade-off between efficient exploration and ergodicity? Quantitative theoretical analysis? General implementation?
- Complexity reduction in standard MCMC scheme by factorizing interaction terms.
- Dealing with energy extensivity and strong frustration? Limit for computational complexity reduction?
- Non-local moves by normalizing flows
- Ergodic training set? Fine tuning? Mode collapse? Hard-core potentials?

Particles: S. Kapfer, W. Krauth
PDMP: A. Monemvassitis, A. Guillin Polymer: T. A. Kampmann, J. Kierfeld

Bayesian inference: A. Durmus
Complexity: Y. Deng, X. Tan
Normalizing flows: T. Guyon, V. Souveton, A. Guillin, G. Lavaux, J. Jasche

(Not complete) References

- DB MCMC

■ N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953).

- A. Jaster, Physica A 264, 134 (1999).
- Discrete lifted MCMC/HMC
\square P. Diaconis, S. Holmes, and R. M. Neal, Ann. Appl. Probab. 10, 726 (2000)
- S. Duane, A.D. Kennedy, B. J. Pendleton and D. Roweth, Physics letters B, 195(2), 216-222 (1987).
- R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2(11), 2011.

■ S.Turitsyn, M. Chertkov and M. Vucelja, Physica D 240, 410 (2011)

- ECMC/PDMP

■ E. P. Bernard, W. Krauth, D. B. Wilson Phys. Rev. E 80056704 (2009)
■ E. A. J. F. Peters and G. de With, Phys. Rev. E, 85:026703 (2012)
■ M. Michel, S. C. Kapfer and W. Krauth, J. Chem. Phys., 140, 054116 (2014)
■ J. Harland, M. Michel, T. A. Kampmann and J. Kierfeld, Phys. Rev. E, 117 (3), 30001 (2017).

- M. Michel, A. Durmus and S. Sénécal, JCGS, 29(4): 689-702 (2020)

■ A. Monemvassitis, A. Guillin, M. Michel, prepint (2022)
■ M. Davis, Markov Models \& Optimization, Volume 49. CRC Press. (1993)
■ A. Bouchard-Côté, S. Vollmer and A. Doucet.JASA, 113(522): 855-867 (2018)
■ J. Bierkens, P. Fearnhead, G. Roberts. Ann. Statist. 47(3): 1288-1320 (2019)

- Complexity reduction
E. Luijten and H. W. J. Bloete, Int. J. Mod. Phys. C 06, 359 (1995)

■ S. Kapfer and W. Krauth, Phys. Rev. E, 94, 031302(R) (2016)
■ M. Michel, X. Tan and Y. Deng, Phys. Rev. E, 99, 010105, (2019)

- Normalizing flows

■ D. Jimenez Rezende and S. Mohamed. preprint arXiv:1505.05770, 2015.
■ D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. NeurIPS, (2016).
■ L. Dinh, J. Sohl-Dickstein, and S. Bengio. ICLR, 2(017).
■ F. Noé, S. Olsson, J. Khler, and H. Wu. Science, 365(6457), (2019).

