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Machine Learning (ML) for extreme events

The regional impact of climate change remains to be explored[1]

Extreme events, like heat waves important impact but rare

Forecasting with Artificial Neural Networks (ANNs)[2][3]

[1] S. Seneviratne et al., Climate Change 2021: Sixth Assessment Report of the IPCC ()
[2] E. Racah et al., Advances in Neural Information Processing Systems (2017)
[3] V. Jacques-Dumas et al., Frontiers in Climate (2022)
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Intro to Machine Learning (ML)

ANNs: image, speach recognition, games

ML consists of various fields: [4]

Supervised learning
Unsupervised learning
Reinforecement learning

Components of ANNs:

Hyperparameters θ, e.g. weights w𝑖

Nonlinear activation function
loss function 𝐸 (θ) = C(X , g(θ))
backprogapation to minimize loss [5]

θ𝑡+1 = θ𝑡 − 𝜂𝑡∇𝜃
∑︁
𝑖∈𝐵𝑘

𝑒𝑖 (X𝑖 , θ) (1)

Universal function approximators[6]

Figure: architecture

[4] P. Mehta et al., Physics Reports (2019)
[5] D. E. Rumelhart et al., Nature (1986)
[6] G. Cybenko, Mathematics of Control, Signals and Systems (1989)
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ML in computational Earth sciences

From pattern recognition to physical models

Early work of Bjerknes to the method of analogues Lorenz[7]

Success of physical models over pattern recognition, 1950s onwards

The end of Dennard scaling: arithmetic speed levels off

Figure: Analogue method

[7] E. N. Lorenz, Journal of Atmospheric Sciences (1969)
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ML in computational Earth sciences

From physical models to pattern recognition

Success of ML in long-term prediction such as ENSO [8]

Will ML replace or morph with physical modeling? [9]

Figure: Nino3.4 indexes for an 18-month-lead

[8] Y.-G. Ham et al., Nature (2019)
[9] V. Balaji, Phil. Trans.of the Royal Soc.A: Math., Phys.and Eng. Sciences (2021)
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ML in computational Earth sciences

Studying extremes with models vs ML

General Circulation Models (GCMs) when used for extremes of : [10]

at the regional scale, are still limited by the rarity of events
For uncertainty quantification larger multi-model ensembles wanted

Figure: European heat wave 2003 Figure: Changes in temperatures[11]

[10] S. Seneviratne et al., A Special Report of Working Groups I and II of the IPCC (2012)
[11] S. E. Perkins, Atmospheric Research (2015)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Scandinavian blocking: HW onset

Rossby wave breaking and blocking

Advection: persistent anticyclonic anomaly

𝑉 =
𝑘

𝑓
× ∇𝑧 (2)

Coriolis parameter 500 mbar geopotential height

𝑧(𝑝) = 𝑅
∫ 𝑝𝑠

𝑝

𝑇

𝑔

𝑑𝑝

𝑝

(3)

Dry soil contributes to heating due to lack of latent heat

Figure: Scandinavia: Average temperature Figure: Temperature, geopotential
(ECMWF)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Summer HWs over France: definition

HW: extreme of space-time averaged temperature anomalies:

𝐴𝑇 (𝑡) =
1

𝑇

∫ 𝑡+𝑇

𝑡

1

|D|

∫
𝐷

(𝑇2𝑚 − E (𝑇2𝑚)) (®𝑟, 𝑢) d®𝑟d𝑢 (4)

Duration: 𝑇 = 14 days Area 𝐷 - “France”

Figure: Temperature fluctuations Figure: 1000 years of 𝐴(𝑡)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Plasim: Planet Simulator, HWs in France

Intermediate complexity model allows long simulation (8000 years)

SST and the ice cover is repeated cyclically every year

Resolution: 2.8 by 2.8 degrees. 10 vertical atmospheric levels

Figure: Plasim gridpoints Figure: Plasim vs ERA5: return time plot [12]

[12] G. Miloshevich et al., (Apr. 2021)
George Miloshevich (ENSL) george.miloshevich@ens-lyon.fr ML Climate 2022 10 / 20



Predicting Heat Waves (HW) with Deep Learning (DL)

Evaluating the performance of predictions
The goal of inference: find committor function 𝑃(𝑌 |𝑋)

P (𝑋 = 𝑥 and 𝑌 = 𝑦) = 𝑃(𝑥, 𝑦) = 𝑃(𝑌 |𝑋)𝑃(𝑋). (5)

Logarithmic (a.k.a, cross-entropy) score is suitable for rare events[13]

−𝑆 [𝑝𝑌 (𝑋)] = −
𝐾−1∑︁
𝑘=0

𝑌𝑘 log [𝑝𝑘 (𝑥)] , 𝐾 = 2 for binary (6)

In the limit of a large dataset, we have a law of large numbers

E {𝑆 [𝑝𝑌 (𝑋)]} = −
∫

d𝑥𝑃(𝑥)
(
𝐾−1∑︁
𝑘=0

𝑝𝑘 log 𝑝𝑘 −
𝐾−1∑︁
𝑘=0

𝑝𝑘 log

(
𝑝𝑘

𝑝𝑘

))
, (7)

Normalized Skill Score (NSS): subtract climatological prediction

NSS =
−∑

𝑖 𝑝𝑖 log 𝑝𝑖 − E {𝑆 [𝑝𝑌 (𝑋)]}
−∑

𝑖 𝑝𝑖 log 𝑝𝑖
(8)

[13] R. Benedetti, Monthly Weather Review (2010)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Probabilistic prediction: softmax output

Soft-max (sigmoid) bounds to (0, 1) range [14][15]

𝑃

(
𝑌𝑛 = 𝑘 | x𝑛, {𝑤𝑘′}𝐾−1

𝑘′=0

)
=

e−𝑥
𝑇
𝑛 𝑤𝑘∑𝐾−1

𝑘′=0 e
−𝑥𝑇𝑛 𝑤𝑘′

, (9)

𝑌 - binary (0: is not HW, 1: is HW):

HW: above 95 percentile of 𝐴(𝑡)
𝑋 (𝜏) - data at time 𝜏 preceding HW

𝑋0 = 𝑡𝑀 - 2m temperature, France
𝑋1 = 𝑧𝐺 - 500mbar geopotential
𝑋2 = 𝑠𝑀 - soil moisture, France

𝑡𝑀

𝑧𝐺

𝑠𝑀

Figure: Possible field inputs

[14] J. Platt et al., Advances in large margin classifiers (1999)
[15] C. Guo et al., (2017)
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Predicting Heat Waves (HW) with Deep Learning (DL)

CNN Architecture with masking

𝑡𝑀

𝑧𝐺

𝑠𝑀

Conv 2𝐷
0 (3 × 3 × 32)

ReL
u

Max Pool 2𝐷
1 (2 × 2)
Conv 2𝐷

2 (3 × 3 × 64)

ReL
u

Max Pool 2𝐷
3 (2 × 2)Conv 2𝐷

4 (3 × 3 × 64)

ReL
u+F

lat

Yes
No

Sof
tma

x
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Predicting Heat Waves (HW) with Deep Learning (DL)

NSS vs lag time for different fields

We present the plots of NSS vs lag time 𝜏 selecting different fields
𝑠𝑀 has long-term, while 𝑧𝐺 has short-term information
𝑧𝐺 , 𝑠𝑀 coupled together account for most of the information

Figure: NSS 7200 years

𝑡𝑀

𝑧𝐺

𝑠𝑀

Figure: Possible field inputs
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Predicting Heat Waves (HW) with Deep Learning (DL)

NSS vs different areas and data size

We present the plots of NSS vs lag time 𝜏
Having less data, some global teleconnections not represented well
In reanalysis only the data from 1950 to present is available

Figure: 𝑧𝐴
trained on 100 years

trained on 800 years

Figure: NSS data reduction

Figure: 𝑧𝐺
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Predicting Heat Waves (HW) with Deep Learning (DL)

Committor composite maps

We plot composite maps conditioned to 99.9 percentile of 𝑞 = 𝑞(𝜏)
The composite map reveals tripole teleconnection pattern

We vary 𝜏 and observe that the teleconnection pattern slightly shifts

Investigating saliency maps is the subject of current work

Figure: 𝜏 = 0 Figure: 𝜏 = −5 Figure: 𝜏 = −10

George Miloshevich (ENSL) george.miloshevich@ens-lyon.fr ML Climate 2022 16 / 20
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Future work and conclusions

Work in prograss: Rare event algorithm

The optimal score function for [16] is related to 𝑃(𝑌 |𝑋) committor

𝐺𝑘 (z𝑘) =

√︄
𝑔𝑘 (zk)

𝑔𝑘−1 (zk−1)
, where (10)

𝑔𝑘 (z𝑘) :=
∫
E [ℎ (Z𝑛) | 𝑍𝑘+1 = 𝑧′]2 𝑃 (𝑍𝑘+1 = 𝑧′ | 𝑍𝑘 = 𝑧𝑘) 𝑑𝑧′ (11)

Figure: Geneological rare event algorithm Figure: Importance sapling

[16] H. Chraibi et al., Monte Carlo Methods and Applications (2021)
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Future work and conclusions

Smoothness of the committor & transfer learning

𝑞 = 𝑞(𝜏) is expected to be a smoothly increase closer to the heat wave

This property is epected to play a role in rare event algorithm [17]

We achieve this by transfer learning applied to successive 𝜏

Figure: Training pipeline Figure: 𝑞𝑡𝑀 ,𝑧𝐺 ,𝑠𝑀 vs transfer learning

[17] F. Ragone and F. Bouchet, Geophysical Research Letters (2021)
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Future work and conclusions

Work in prograss: The analogue Markov chain

𝑋𝑛★ = argmin
{𝑋𝑛 }

{𝑑 (𝑥, 𝑋𝑛)}

Promising [18]in
Cherney-DeVore system

Problem: curse of high
dimensionality (𝑧𝐺)

Possible solution:
Dimensionality reduction

Issues: Reconstruction of
localized heat waves

Possible soloution: Add
committor to the
autoencoder loss

Figure: Analogue method: nearest neighbors

Figure: Schematics of a (variational) autoencoder

[18] D. Lucente et al., arXiv preprint arXiv:2110.05050 (2021)
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Future work and conclusions

Summary

Conclusions:

We have discussed how ML can be used to predict HWs
This consisted of CNN trained on 8000 years of Plasim
To get appreciable skill a lot of data necessary
Most of the information is in soil moisture and geopotential
Transfer learning helps achieve smoothness of the predictions

In progress:

Rare event algorithm: use learned probability for importance sampling
Analogue method: dimensionality reduction, an alternative to CNN
Transfer learning: Plasim → CESM → ERA5
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Future work: CESM/ERA5 transfer learning

Figure: Plasim rare event[19] Figure: CESM composite[20] Figure: ERA5 July 2018

The goal of the project: committor function for reanalysis

Pretrain the CNN on 8000 years long Plasim run
Transfer Learning to CESM (modern model conistent with IPCC)
Transfer Learning to ERA5 reanalysis set (perhaps fine-tuning?)

[19] F. Ragone et al., Proceedings of the National Academy of Sciences (2018)
[20] G. Miloshevich et al., “Drivers of midlatitude extreme heat waves revealed by ana-
logues and machine learning”, in Egu general assembly conference abstracts, EGU General
Assembly Conference Abstracts (Apr. 2021), EGU21–15642
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Convolutional Neural Networks (CNNs)

Better image processing due to fewer neurons, translation invariance

CNNs achieve state-of-the-art results on many benchmark datasets[21]

[21] A. Krizhevsky et al., Advances in neural information processing systems (2012)
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