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Machine Learning (ML) for extreme events

o The regional impact of climate change remains to be explored!!]
@ Extreme events, like heat waves important impact but rare
o Forecasting with Artificial Neural Networks (ANNs)2!

Object classification and localization Pattern classification

[1] S. Seneviratne et al., Climate Change 2021: Sixth Assessment Report of the IPCC ()
[2] E. Racah et al., Advances in Neural Information Processing Systems (2017)
[3] V. Jacques-Dumas et al., Frontiers in Climate (2022)
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Intro to Machine Learning (ML)

ANNSs: image, speach recognition, games

@ ML consists of various fields: [4]

e Supervised learning
e Unsupervised learning
o Reinforecement learning

[4] P. Mehta et al., Physics Reports (2019)

[5] D. E. Rumelhart et al., Nature (1986)

[6] G. Cybenko, Mathematics of Control, Signals and Systems (1989)
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ANNSs: image, speach recognition, games

@ ML consists of various fields: [4]

e Supervised learning A
. . ; ineari
e Unsupervised learning X1% near noniineanty
o Reinforecement learning input % — 2 wxep — .+ output

@ Components of ANNs: =
) T

e Hyperparameters 0, e.g. weights w;

e Nonlinear activation function ® P}g:f:

o loss function E(0) = C(X,g(0)) —— oot

e backprogapation to minimize loss [® Iaer
01 =0, -1V . er(Xi,0) (1) '.g;::{ O—

i€By
o Universal function approximatorsl®!

Fi : architect
[4] P. Mehta et al., Physics Reports (2019) gure: architecture

[5] D. E. Rumelhart et al., Nature (1986)
[6] G. Cybenko, Mathematics of Control, Signals and Systems (1989)
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ML in computational Earth sciences

From pattern recognition to physical models

o Early work of Bjerknes to the method of analogues Lorenzl”]
@ Success of physical models over pattern recognition, 1950s onwards

@ The end of Dennard scaling: arithmetic speed levels off

Figure: Analogue method

[7] E. N. Lorenz, Journal of Atmospheric Sciences (1969)
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ML in computational Earth sciences

From physical models to pattern recognition

@ Success of ML in long-term prediction such as ENSO [8]
o Will ML replace or morph with physical modeling? °!

3t = Observation —e— CNN (0.64) —v— SINTEX-F (0.49)
ot
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Figure: Nino3.4 indexes for an 18-month-lead

[8] Y.-G. Ham et al., Nature (2019)
[9] V. Balaji, Phil. Trans.of the Royal Soc.A: Math., Phys.and Eng. Sciences (2021)
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ML in computational Earth sciences

Studying extremes with models vs ML

NS de LYO!

e General Circulation Models (GCMs) when used for extremes of : [10]

e at the regional scale, are still limited by the rarity of events
e For uncertainty quantification larger multi-model ensembles wanted

Shifted Mean

]

-

Probability of Occurrence

Increased Variability

Probability of Occurrence

Figure: European heat wave 2003 Figure: Changes in temperatures(!1]
[10] S. Seneviratne et al., A Special Report of Working Groups | and Il of the IPCC (2012)
[11] S. E. Perkins, Atmospheric Research (2015)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Scandinavian blocking: HW onset

@ Rossby wave breaking and blocking

- : . : Ps T dp
@ Advection: persistent apticyclonic anomaly z2(p) =R i
g§p

V==xVz (2) P (3)

f
L[500 mbar geopotential height]

@ Dry soil contributes to heating due to lack of latent heat

— daily
& 30 d mean
4
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0
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Figure: Scandinavia: Average temperature Figure: Temperature, geopotential

(ECMWF)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Summer HWs over France: definition

NS de LYO!

@ HW: extreme of space-time averaged temperature anomalies:

t+T
Ar (1) = / ﬁ /D (Tom — B (Tom)) (. u) didlu (4)

[Duration. T=14 days] Area D - “France”]
P 3
} 4 .
[ =3 z
£
H
-2
A -4
&
a a 0 0 0 ) 50 100 130
r Days from May 0
Figure: Temperature fluctuations Figure: 1000 years of A(r)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Plasim: Planet Simulator, HWs in France

NS de LYO!

@ Intermediate complexity model allows long simulation (8000 years)
@ SST and the ice cover is repeated cyclically every year
@ Resolution: 2.8 by 2.8 degrees. 10 vertical atmospheric levels

5 days (PLASIM)
14 days [PLASIM)
30 days [PLASIM)
90 days [PLASIM)
5 days (ERA)

14 days (ERA)

30 days (ERA)

90 days (ERA)

10° 10t 10?

[12]

Figure: Plasim gridpoints Figure: Plasim vs ERAbB: return time plot

[12] G. Miloshevich et al., (Apr. 2021) oy <@
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Predicting Heat Waves (HW) with Deep Learning (DL)

Evaluating the performance of predictions

The goal of inference: find committor function P(Y|X)

P(X=x and Y=y) =P(x,y) = P(Y|X)P(X). (5)

[13] R. Benedetti, Monthly Weather Review (2010)
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Ao

K-1 K-1
E{S [pr(X)]} = - / dxP(x) (Z prlogpi— ) pi log(
k=0 k=0

[13] R. Benedetti, Monthly Weather Review (2010)
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P(X=x and Y =y) =P(x,y) = P(Y|X)P(X). (5)

Logarithmic (a.k.a, cross-entropy) score is suitable for rare events[13!

=S [py(X)] = Z Yilog [pr(x)], K =2 for binary (6)

In the limit of a large dataset, we have a law of large numbers

Ao

Normalized Skill Score (NSS): subtract climatological prediction
—2ipilogp; —E{S[py (X)]}
-2 Pilogp;

[13] R. Benedetti, Monthly Weather Review (2010)

K-1 K-1
E{S [pr(X)]} = - / dxP(x) (Z prlogpi— ) pi log(
k=0 k=0

NSS =

(8)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Probabilistic prediction: softmax output

e Soft-max (sigmoid) bounds to (0, 1) range [141115] S
T
- e n "k .
P(Ya =kl wn 0eds) = g (9)

T
Zk’ Oe —Xpn Wi’

[14] J. Platt et al., Advances in large margin classifiers (1999)
[15] C. Guo et al., (2017)
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Predicting Heat Waves (HW) with Deep Learning (DL)

Probabilistic prediction: softmax output

e Soft-max (sigmoid) bounds to (0, 1) range [141115]

K-1 e_xZ;Wk
P (Yn =k |z, {Wk'}kr:o) = W, (9)

k=0 €

@ Y - binary (0: is not HW, 1: is HW):
o HW: above 95 percentile of A(t)
@ X(7) - data at time 7 preceding HW

e Xy =ty - 2m temperature, France
e X; =z - 500mbar geopotential
o X5 = s)s - soil moisture, France

Figure: Possible field inputs

[14] J. Platt et al., Advances in large margin classifiers (1999)
[15] C. Guo et al., (2017)
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Probabilistic prediction: softmax output

e Soft-max (sigmoid) bounds to (0, 1) range [141115]

K-1 ©
P (Yn =k | x,, {Wk’}k’:o) Py R S
Zk’ -0 e —Xpn Wi’

—xLwy

@ Y - binary (0: is not HW, 1: is HW):
o HW: above 95 percentile of A(t)
@ X(7) - data at time 7 preceding HW

e Xy =tp - 2m temperature, France
e X; =z - 500mbar geopotential
® Xy =spy - soil moisture, France Figure: Possible field inputs

- Test ; } Test — } Training £ . =
-Z
Training

2 Training

2
Test 3 3
rainin, Training n Test a
T € 5 | 5 | }Training 5 } Training - Test
[14] J. Platt et al., Advances in large margin classifiers (1999)

[15] C. Guo et al., (2017)
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Predicting Heat Waves (HW) with Deep Learning (DL)

CNN Architecture with masking
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Predicting Heat Waves (HW) with Deep Learning (DL)

NSS vs lag time for different fields

NS de LYO!

@ We present the plots of NSS vs lag time 7 selecting different fields
@ sps has long-term, while zg has short-term information
@ 7, sy coupled together account for most of the information

0.5

0.4+

0.34

0.2

0.19

0.0

T (days)

Figure: NSS 7200 years Figure: Possible field inputs
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Predicting Heat Waves (HW) with Deep Learning (DL)

NSS vs different areas and data size

@ We present the plots of NSS vs lag time 7
@ Having less data, some global teleconnections not represented well
@ In reanalysis only the data from 1950 to present is available

0.5
== tw;Z; sm:800yrs
—F- tw:zZa; sm:800yrs
—F: = tw; Zg; Sm: 100yrs
0.4 i\ —F = tw; Za; sm:100yrs
\QQ
\
\\\\ trained on 800 years
1 N
o .
\ ;\\
\ N
021 I\ N 5
\ i e
0.14 {77 ________ i _.:T
00 tramed on 100 years Figure; G
Figure: z4 0 5 10 15 20 25 30
T (days)

Figure: NSS data reduction
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Predicting Heat Waves (HW) with Deep Learning (DL)

Committor composite maps

NS de LYO!

@ We plot composite maps conditioned to 99.9 percentile of g = ¢g(7)
@ The composite map reveals tripole teleconnection pattern
@ We vary 7 and observe that the teleconnection pattern slightly shifts

@ Investigating saliency maps is the subject of current work

Figure: 7=0 Figure: 7=-5 Figure: 7 =-10
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Future work and conclusions

Work in prograss: Rare event algorithm

NS de LYO!

e The optimal score function for [16] is related to P(Y|X) committor

_ / gk (2k)
Gk (Zk)— m, where (10)

sz = [ EI0(Z) | Zia = 2P P(Zia =2 | Ze =) d (1)

A 05
04 P p
0.3 /\\
w
o
o
0.2
/
0.1
B
0
6 -4 2 0 2 4 6
. X
Figure: Geneological rare event algorithm Figure: Importance sapling

[16] H. Chraibi et al., Monte Carlo Methods and Applications (2621)
e



Future work and conclusions

Smoothness of the committor & transfer learning

@ g = ¢q(7) is expected to be a smoothly increase closer to the heat wave

o This property is epected to play a role in rare event algorithm [17]

@ We achieve this by transfer learning

Machine Learning

Optimal score
function

Direct
sampling

Rare Event Algorithm

Figure: Training pipeline

applied to successive T

training performed:
~&— with transfer learning
~®— without transfer learning

25 30

(Committor function)

Figure: g1y, ,26.,5m VS transfer learning

[17] F. Ragone and F. Bouchet, Geophysical Research Letters (2621)
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Future work and conclusions

Work in prograss: The analogue Markov chain

X, = argmin {d (x, X,)}
o Promising [18lin
Cherney-DeVore system

@ Problem: curse of high
dimensionality (z¢)

Figure: Analogue method: nearest neighbors

@ Possible solution:

Dimensionality reduction
@ Issues: Reconstruction of m
localized heat waves

° POSSible SOIOUtion: Add Input Encoder I Latent l Decoder Outputl
. Space
committor to the
autoencoder loss

Figure: Schematics of a (variational) autoencoder

[18] D. Lucente et al., arXiv preprint arXiv:2110.05050 (2021)
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Future work and conclusions

Summary

@ Conclusions:

We have discussed how ML can be used to predict HWs

e This consisted of CNN trained on 8000 years of Plasim

e To get appreciable skill a lot of data necessary

e Most of the information is in soil moisture and geopotential
o Transfer learning helps achieve smoothness of the predictions

@ In progress:

e Rare event algorithm: use learned probability for importance sampling
e Analogue method: dimensionality reduction, an alternative to CNN
e Transfer learning: Plasim — CESM — ERA5

Ackwnoledgements to the future and past collaborators:

o Freddy Bouchet @ Dario Lucente

o Patrice Abry @ Bastien Conzian
@ Pierre Borgnat @ Alessandro Lovo
@ Francesco Ragone @ Clement Le Priol
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Figure: Plasim rare event!®  Figure: CESM compositel2] Figure: ERA5 July 2018

@ The goal of the project: committor function for reanalysis

o Pretrain the CNN on 8000 years long Plasim run

o Transfer Learning to CESM (modern model conistent with IPCC)

o Transfer Learning to ERAS reanalysis set (perhaps fine-tuning?)
[19] F. Ragone et al., Proceedings of the National Academy of Sciences (2018)
[20] G. Miloshevich et al., “Drivers of midlatitude extreme heat waves revealed by ana-
logues and machine learning”, in Egu general assembly conference abstracts, EGU General
Assembly Conference Abstracts (Apr. 2021), EGU21-15642
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https://doi.org/10.5194/egusphere-egu21-15642

Convolutional Neural Networks (CNNs)

NS de LYO!

@ Better image processing due to fewer neurons, translation invariance

3.0(3.0

a.03.0(a.0

Convolved
Feature

Image

[21] A. Krizhevsky et al., Advances in neural information processing systems=(2012} ©ac
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NS de LYO!
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Convolutional Neural Networks (CNNs)

@ Better image processing due to fewer neurons, translation invariance

image patch hidden layer 1 hidden layer 2 final layer
1 layer 4 feature maps 8 feature maps 4 class units
36x36 28x28 14x14 10x10 5x5

convolution max convolution max convolution
pooling (kernel: 5x&

3.0(3.0

a.03.0(a.0

Convolved
Feature

Image

[21] A. Krizhevsky et al., Advances in neural information processing systems=(20%2) -




Convolutional Neural Networks (CNNs)

@ Better image processing due to fewer neurons, translation invariance

@ CNNs achieve state-of-the-art results on many benchmark datasets/?!]

image patch hidden layer 1 hidden layer 2 final layer
1 layer 4 feature maps 8 feature maps 4 class units
36x36 28x28 14x14 10x10 5x5

convelution max convolution max convolution
pooling (kernel: 5x&

3.0(3.0

a.03.0(a.0

Convolved
Feature

Image

[21] A. Krizhevsky et al., Advances in neural information precessing systems=(20%2)
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