
Schema-aware extended Annotation Graphs

Vincent Barrellon
Univ Lyon, INSA-Lyon

CNRS, LIRIS, UMR5205
F-69621, Villeurbanne, France
firstname.lastname@insa-lyon.fr

Pierre-Edouard Portier
Univ Lyon, INSA-Lyon

CNRS, LIRIS, UMR5205
F-69621, Villeurbanne, France
firstname.lastname@insa-lyon.fr

Sylvie Calabretto
Univ Lyon, INSA-Lyon

CNRS, LIRIS, UMR5205
F-69621, Villeurbanne, France
firstname.lastname@insa-lyon.fr

Olivier Ferret
Univ Lyon, Lyon 2

CNRS, IHRIM, UMR5317
F-69365, Lyon, France

firstname.lastname@univ-lyon2.fr

ABSTRACT

Multistructured (M-S) documents were introduced as an an-
swer to the need of ever more expressive data models for
scholarly annotation, as experienced in the frame of Digital
Humanities. Many proposals go beyond XML, that is the
gold standard for annotation, and allow the expression of
multilevel, concurrent annotation. However, most of them
lack support for algorithmic tasks like validation and query-
ing, despite those being central in most of their applica-
tion contexts. In this paper, we focus on two aspects of
annotation: data model expressiveness and validation. We
introduce extended Annotation Graphs (eAG), a highly ex-
pressive graph-based data model, fit for the enrichment of
multimedia resources. Regarding validation of M-S docu-
ments, we identify algorithmic complexity as a limiting fac-
tor. We advocate that this limitation may be bypassed pro-
vided validation can be checked by construction, that is by
constraining the shape of data during its very manufacture.
So far as we know, no existing validation mechanism for
graph-structured data meets this goal. We define here such
a mechanism, based on the simulation relation, somehow fol-
lowing a track initiated in Dataguides. We prove that thanks
to this mechanism, the validity of M-S data regarding a given
schema can be guaranteed without any algorithmic check.

CCS Concepts

•Applied computing→Annotation; •Information sys-
tems→Data model extensions; •Theory of computation
→ Data structures design and analysis;

Keywords

Multistructured data model; Validation; Schemas; Graphs.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DocEng 2016 Vienna, Austria

c⃝ 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

Multistructured (M-S) data models have been a hot topic
for over a decade. Correlated to the rise of Digital Human-
ities, they ground on the fact that a single hierarchy is not
always sufficient to represent annotated resources [6], con-
trasting with the setting of XML-based languages as a stan-
dard for scholarly annotations. Hence, “multistructured” is
then to be understood by comparison with XML: annotat-
ing somehow means structuring data (a well-formed XML
document fits into a tree structure); “multi” suggests M-S
data models handle multiple, interlaced hierarchical annota-
tions over the same data. Many models have been proposed
[18]. However, the enhanced expressiveness resulting from
less constrained structural foundations, compared to XML,
comes at a cost: M-S models often lack support for tasks
like querying or validation which are commonplace in XML.

Indeed, validating highly expressive data is challenging,
due to a general trade-off between data models expressive-
ness and algorithmic complexity. The NEXPTIME com-
plexity of OWL/DL inference [20] will serve as a striking
example of how costly the validation of highly expressive
graph-structured documents can be. This trade-off is so
pregnant and restrictive that it applies to XML [23]. Hence
the need for alternative validation strategies for M-S data.

We introduce here “simulation-based validation by con-
struction” for M-S data. Our main results are the following:

- We designed eAG, an expressive M-S data model based
on Annotation Graphs (AGs) [2]. We strengthened the
AG model in order to address its main deficiencies, like
a shared representation for inclusion and cooccurrence
and a limited ability to handle composite resources.

- We identified the simulation relation, first used for the
structural description of semistructured data [5], as a
promising mechanism for eAG validation. We designed
SeAG, a simulation-based schema model for eAG.

- We defined a coupled representation for SeAGs and
eAGs so that, given the representation of a schema,
only valid eAGs can be represented: this is “validation
by construction”. This enables to guarantee the valid-
ity of rich M-S data without algorithmic check, bypass-
ing the trade-off between expressiveness and complex-
ity, when schema definition can precede annotation.

Pierre-Edouard Portier
DRAFT

- We found that the eAG/SeAG model is compatible
with classical, a posteriori validation. In this case,
checking whether an eAG is valid against any schema
can be decided in polynomial time (O(|edges|·|nodes|)).

- We finally proved that for hierarchical data, SeAG syn-
tactic validation is not less straitening than Relax-NG.

“Validation by construction” can be seen as a special on-
the-fly validation mechanism. First, we prove the interest of
such validation in a (not exclusive) application context. A
panorama of M-S models and validation mechanisms follows.
Eventually, we formally introduce eAGs and SeAGs.

2. APPLICATION CONTEXT
Among other application fields of M-S data, eAG/SeAG

are particularly fit for scholarly digital publishing projects.
Four such projects are associated to this work, dealing with
Diderot’s Encyclopédie, Stendhal’s Journaux et Papiers, De-
santi’s archive and Flaubert’s documentation for Bouvard
and Pécuchet1 . Such projects may benefit from a M-S data
model supporting on-the-fly validation for two reasons.

Data model expressiveness. Editors are mainly expert
humanists; their aim is to express complex and accurate
information about the corpus they edit through annota-
tion. They may want to annotate data according to several
competing paradigms, resulting in non-hierarchical annota-
tions2. For economical reasons, not all editorial projects
benefit from technical support, which means editors often
face annotation encoding alone. Thus, there is a potential
discrepancy between the technicality of annotation and the
technical skills of the editors. One (formally elegant) way to
bypass this discrepancy is to provide them with very expres-
sive M-S data models, so that non-hierarchical information
encoding, that is tricky in XML, becomes straightforward.

Editorial routine. Editorial routines starts with the defini-
tion of the editorial policy, which sets the nature of the crit-
ical enrichments. In XML-based digital publishing projects,
schemas are a common way to represent this policy. Tran-
scribing the editorial principles into a schema guarantees
a certain harmony in annotation – hence the need for a
schema-aware M-S data model. Moreover, most XML tools
provide the user with content assist (i.e. on-the-fly valida-
tion) features, acting as an authoring tool that suggests el-
ements according to the editing context. This feature, that
helps commitment into deep annotation, is valuable in a
publishing context, where schemas are defined prior to an-
notation. This is worth translating into the M-S world.

3. RELATED WORKS
XML-TEI is the standard for scholarly publishing. It pro-

vides scholars with a modular, versatile and documented
schema, and user-friendly XML editors are plenty. More-
over, XML is a natural candidate for annotation. Annota-
tion models need to support: 1. linear characterization (e.g.
along the reading dimension – if unique), 2. representation
of inclusion (e.g. to encode the material structure of a text –
if unique), 3. of disseminated elements and links. XML does
the first two well (in case of uniqueness, above): elements
are ordered along the text; nesting represents inclusion.
1enccre.academie-sciences.fr ; manuscrits-de-stendhal.org ;
archive.desanti.huma-num.fr ; dossiers-flaubert.fr
2See [6], ch. 20.

Still, XML does not suit some common annotation pat-
terns [6]. Overlapping elements are not allowed; links do
not have a syntactical representation, so they need separate
validation (e.g. with Schematron); non inclusive nesting,
frequent in case of multiple annotation, cannot be repre-
sented. Some works aim at conforming TEI-XML with more
expressive data models [6, 7], but fail to tackle some XML
inherent limitations (e.g. nesting representing inclusion) or
lose compliance with XML tools (XSD, XQuery, etc.) [18].

Multistructured data models.
Formally speaking, annotated resources can be regarded

as labelled graphs [5]. From there on, the expressive limita-
tions above appear as a consequence of the overly restricted
family of graphs upon which XML is based: trees. This
formal reasoning gave birth to Competing markup or Mul-
tistructured (M-S) data models [18]. The term “multistruc-
tured” refers to what structure means in XML: in a M-S
data model, well-formedness extends from trees to (at least)
forests, graphs whose connected subgraphs are trees.

CONCUR [9] precisely enhances SGML to support forests
of elements. Each tree is defined in a DTD; inside a CON-
CUR document, the tags explicitly relate to the tree they
belong to. MuLaX [11] transposes this philosophy to XML,
despite XML documents referring to at most one schema. A
MuLaX document is a mix of overlapping elements from dis-
joint hierarchies; each hierarchy defines a projection, yield-
ing a well-formed XML document that can be validated
against a schema. Those solutions, however, do not sup-
port cross-hierarchies constraints; self-overlap is also prob-
lematic3. MSXD [3] implements such constraints. Its formal
model is a forest, but unlike the above solutions, the differ-
ent trees are instantiated in distinct documents. RelaxNG
schemas validate each. The relative position of elements
from different trees can be constrained by Allen’s relations.

Other models rely on well identified and wider graph fam-
ilies like multitrees, where trees may share nodes (TexMecs
[12]), multicolored trees (MCT, [13]) or restrained, acyclic
polyarchies (GODDAG [22]). Multitrees can be handled by
an ingenious grammar-based validation language, dubbed
Rabbit/duck Grammar (RdG) [21]. While checking some
crosswise constraints, a RdG extracts hierarchies from the
multitree structured document; the extracts are then vali-
dated against XML schemas. RdGs manage self-overlap.

More expressive standoff, graph-based models, exempli-
fied by LMNL [27], have been proposed. A LMNL doc-
ument is a layered directed acyclic graph where elements
are labelled ranges from a character stream. Since they are
text streams themselves, even annotations can be annotated.
Creole, a powerful grammar-based schema language, vali-
dates LMNL [26]. Annotation Graphs [2] is another model
based upon a handy notion of chronology for multimedia cor-
pus annotation. A few RDF-based annotation models have
been proposed, amongst which EARMARK [17] stands out.

M-S validation : algorithmic complexity.
As detailed above, most M-S validation mechanisms pro-

ceed tree after tree, providing the final user with a clumsy
modelling tool. MSXD only enables to express weak con-

3Since individual schemas cannot define overlap, an arbi-
trary number of schemas is required to validate multiple,
self-overlapping elements [26]. This also applies to MSXD.

Figure 1: Document showing overlap, a figure en-
closed in text and internal references.

straints betweens trees. RdGs, which somehow manages to
embrace multitrees, fall short when it comes to validating
more general graphs. A reason to that glass ceiling might be
found in time complexity4. In general, the more expressive
the data model, the higher the complexity for the related
processing tasks [23, 15, 14, 20]. This applies, at least, to
grammar-based and rule-based validation.

The three main validation languages for XML, namely
DTD, W3C XML Schema (XSD) and RelaxNG, are com-
monly modelled as tree grammars, or tree automaton [15].
Although not equal, the languages that those schemas recog-
nise fit into regular tree languages5, for which validation can
be done in linear time in the documents’ size [14]. Other tree
languages may not even be decidable for interpretation [23],
which is part of validation in RelaxNG and XSD (Figure 5).

Little information is available about the complexity of
the advanced M-S validation mechanisms. The processing
cost of the initial MSXD schema mechanism, combining Re-
laxNG with Allen’s relations, was left undetermined [3]. In
the end, it seems not to have been implemented as such [4]:
XQuery extensions were designed as surrogates for Allen’s
relations and cross-hierarchies constraints rather checked by
querying the data. Creole, the only consistent schema mech-
anism validating documents with layered, overlapping an-
notations, was prototyped using XSLT; despite RelaxNG-
inspired optimization, the result was considered “too slow”
[26] – no other implementation followed, unfortunately.

RDF-based M-S data models suffer from the same trade-
off. OWL reasoners are sometimes used as validators [8].
However, using OWL rules to validate a document is prob-
lematic. First, OWL-Full is undecidable and the two main
restrictions, OWL-DL and OWL-Lite, perform in NEXP-
TIME and EXPTIME respectively [20]. Second, OWL rules
are not natively interpreted as integrity constraints6, result-
ing in a weak validation mechanism [20]. Techniques to by-
pass those limitations result in huge execution times [25].

4For validation, time- prevails over space-complexity [15].
5Local tree languages (DTDs) restrict single-typed tree lan-
guages (XSD), restricting regular tree languages (RelaxNG).
6The Open World Assumption and the No Unique Name
feature together allow to assess an assertion is verified, but
not that is is not.

4. PROPOSITION
The above enlightens a trade-off between expressiveness

and complexity – trade-off that expresses, to be accurate, in-
side the frame of a given validation technique. For instance,
while Brzozowski derivative-based validation [26] runs in lin-
ear time for regular tree languages, the same approach does
not extend easily to more general graphs. This leads to
question the use and tweak of XML and RDF tools for M-
S validation, precisely because, as well engineered systems,
they are already optimized for their native use.

Simulation [19, 5], is an interesting alternative to rule-
and grammar-based descriptive formalisms. A simulation
is a relation over (often rooted) directed labelled graphs.
Informally, the existence of a rooted simulation of a graph
B by a graph A implies that all the paths of B starting from
its root have a matching path in A, whose label sequence is
identical. Thus, A describes the structure of B, because all
the patterns in B somehow have a match in A. Conversely,
A behaves as a graph schema: it validates the graphs that
contain only patterns defined in A, i.e. that A simulates.

Validation by simulation was first operated for semistruc-
tured (S-S) data [24, 1]. The Object Exchange Model (OEM)
underlying S-S data is a cyclic, unordered, directed labelled
graph. Natively, a S-S database is schemaless; Dataguides
[10] or Graph Schemas [5] are inferred from the data. They
are graphs that simulate the S-S database, providing a struc-
tural description that can be exploited for querying pur-
poses. Simulation check performs in O(|edges| · |vertices|)
[19], which is acceptably low for general graph validation.

Still, despite providing an expressive data model7 and
an appropriate schema mechanism, as far as we know, S-
S model was never tuned for annotation. Indeed, it lacks
a clear representation of inclusion, a notion of order or a
way to index nodes along reading dimensions to support lin-
ear annotation; since Dataguides and Graph Schemas are
inferred from the data, they cannot act as authoring tools.

Still, because the OEM is so general, the principle of a
simulation-based validation is not restricted to S-S data but
“can be applied easily to any graph-based data model” [10].
We propose here a data model, fine-tuned to comply with
simulation-based validation, as we will elaborate.

4.1 Data model: eAG
The data model we propose is extrapolated from Anno-

tation Graphs (AG) [2], hence named extended AG (eAG).
It is a standoff markup formalism. The toy document rep-
resented in figure 1 will serve to illustrate eAG’s expressive
power. It is made of one paragraph spanning over two pages,
whose text locally refers to parts of a figure which, acciden-
tally, nests inside the paragraph (but is not part of it).

An eAG is a directed, connected and labelled cyclic graph
G = (V,E), with edges E and vertices V . It has only one
root and one leaf, denoted root(G) and leaf(G) respectively.
It verifies all the properties that follow.

Notation. In the following, v⌊e⌋v′ denotes a graph com-
posed of a node v connected to a node v′ by a directed edge
e. label(e) yields the value of the label of e.

First, we define chronologies, that is how locations in com-
posite resources can be made reference to.

7Surprisingly, the OEM is referred to as “essentially
equivalent to XML” on the Lore project website (info-
lab.stanford.edu/lore), which was a pioneering OEM DBMS
before migrating to XML.

Table 1: Allowed suffixes per label class and the
resulting class. “-” stands for “undefined”.
! suffixed by ∅ :In :Out :Att :LinkTo

l ∈ L∅ L∅ LIn LOut LAtt LLinkTo

l ∈ LIn LIn - - - -
l ∈ LOut LOut - - - -
l ∈ LAtt LAtt LIn LOut - -
l ∈ LLinkTo LLinkTo - - - -

Definition 1. A (general) chronology is any ordered set
⟨T,≤⟩. Be then C a set of strings called“chronometer names”.
Be m ∈ C. The reference space associated to m is a unique
ordered set ⟨Tm,≤m⟩. A chronology over m ∈ C is an or-
dered set ⟨T,≤m⟩ so that T ⊆ Tm.

Definition 2. (Concatenation) Be ⟨Ta,≤a⟩ and ⟨Tb,≤b⟩
chronologies. ⟨Ta ·Tb,≤a,b⟩ defines a chronology over Ta∪Tb

iff the following relation ≤a,b defines an order over Ta ∪ Tb:
For any t, t′ ∈ Ta ∪ Tb, then
- t =a,b t

′ ⇔ ∃x ∈ C | (t, t′) ∈ T
2
x ∧ t =x t′

- t <a,b t
′ ⇔ ∃x ∈ C | (t, t′) ∈ T

2
x ∧ t ≤x t′

or ̸ ∃x ∈ C | (t, t′) ∈ T
2
x ∧ (t, t′) ∈ Ta × Tb.

Example 1. Be T1 = {0, 1, 2} and ≤1 the order on natu-
rals. Be T2 = {X,Y } and ≤2 the lexical order. ⟨T1 ·T2,≤1,2⟩
defines a chronology, where 2 <1,2 b for instance. Now, given
T3 = {2} and T4 = {4} equipped with the natural order,
⟨T1 · T2 · T3,≤1,2,3⟩ does not define a chronology (the anti-
symmetry would not hold), while ⟨T1 · T2 · T4,≤1,2,4⟩ does.

Definition 3. (Inclusion) Be ⟨Ta,≤a⟩ and ⟨Tb,≤b⟩ chronolo-
gies. We say ⟨Tb,≤b⟩ ⊆ ⟨Ta,≤a⟩ iff ∃(T1, T2) ⊂ T 2

a so that
⟨T1 · Tb · T2,≤a,b,a⟩ defines a chronology.

Example 2. In Example 1, ⟨T2,≤2⟩ ⊆ ⟨T1 · T4,≤1,4⟩.

This notion of chronology enables to index a composite, yet
continuous content.

Illustration, part 1. Consider the second page in Figure 1.
It contains three modules, respectively containing two text
lines, a figure, and one line. Be the three chronologies:
⟨Ty,≤y⟩ based on a vertical descending dimension that is
not continuous over page changes, with Ty = {y2, y3, y4, y5}
(in ascending order), for the three modules delimitation;
⟨Tx,≤x⟩ based on an horizontal left-to-right dimension, with
Tx = {x0, x1, x2}, for the figure decomposition into images;
⟨Tc,≤c⟩, with Tc = {41, 83, 84, 129, 130, 154} 8, based on
characters (including linebreaks) count, for lines indexation.
By double inclusion, we can define a chronology ⟨T,≤⟩ over
Tc ∪ Tx ∪ Ty , so that y2 < 41 < 83 < 84 < 129 < y3 < x0 <
x1 < x2 < y4 < 130 < 154 < y5.

Definition 4. (References) In an eAG, a reference ref(v)
is associated to each node v. For each v, there is a unique
reference space ⟨Tc,≤⟩c so that ref(v) ∈ Tc.

Two references belonging to the same chronology and shar-
ing the same reference space identify a range within the re-
sources to be annotated. Ranges can be annotated by cre-
ating two nodes bearing the corresponding references, con-
nected by (at least) a directed, labelled edge. In this simple
case, the label constitutes the content of the annotation.
8The first line of page 2 starts at character 41, etc.

To structure further annotation, we define a label seman-
tics to indicate that an annotation is an element, a link, or
is included within another, or is an attribute of another.

Definition 5. (Labels) Be a special character ϵ 9. Be L∅,
ϵ ̸∈ L∅, a set of strings that do not contain the character “:”.
L0 = L∅ ∪ {ϵ} is the set of unsuffixed labels. Additionally,
be S = {:In, :Out, :Att, :LinkTo} the set of suffixes. Labels
can be iteratively suffixed according to the rules given in
table 1. Those rules also define classes of labels, e.g. LIn

the set of labels whose last suffix is :In. The set of all labels
L is the union of all the preceding classes.

In the following, given two strings l and s, s ⊂ l denotes
the fact that l contains the substring s.

One asset of eAG is a clear distinction between accidental
nesting and inclusion representation. We define here inclu-
sion, based upon the :In and :Out suffixes.

Definition 6. (h-equality and dominance). Be a graph
G = (V,E). Be {v0...vN} ⊆ V , {e0...eN−1} ⊆ E, so that
∀i ∈ [0, N − 1], vi⌊ei⌋vi+1 ⊆ G. Be n,m; 0 ≤ n ≤ m ≤ N .
vn is said to be h-equal to vm, denoted vn =h vm, iff :
1. n = m or
2. ∀j ∈ [n,m− 1], label(ej) ∈ L0 ∪ LAtt or
3. vn ̸>h vm ∧ vm ̸>h vn and ∀k, l;n < k ≤ l < m,
vn ≥h vk ∧ vn ≥h vl ∧ vm ≥h vk ∧ vm ≥h vl and vk =h

vl ∨ (vk >h vl ∨ vl >
h vk) [see right below].

When n ̸= m, vn and vm are said to border-h-dominate the
nodes vi, i ∈ [n+ 1, m− 1], denoted (vn, vm) >h

b vi, iff :
1. ∃l ∈ L ; label(en) = l:In and label(em−1) = l:Out and
2. ∀j < k ∈ [n+ 1, m− 1], vj =h vk
or ∃(l,m) ∈ [j, k−1]×[k+1, m−1]; (vl, vm) >h

b vk∧vj =h vl
or ∃(l,m) ∈ [n+1, j−1]×[j+1, k]; (vl, vm) >h

b vj∧vk =h vm.
Be x, y ∈ [0, N]. vx h-dominates vy , denoted vx >h vy , iff
∃n,m, 0 ≤ n ≤ m ≤ N | (vn, vm) >h

b vy ∧ vx =h vn.

Property 1. ∀v⌊e⌋v′ ⊆ G, v ̸=h v′ ∧ v ̸>h v′ ∧ v′ ̸>h v
is equivalent to “:LinkTo”⊂ label(e).

Property 2. Be G = (V,E). ∀v⌊e⌋v′ ⊆ G we enforce that:
label(e) ∈ LIn ⇔ (v >h v′) and label(e) ∈ LOut ⇔ (v′ >h v)

This means that an edge labelled l:In does not go without
a h-dominated path ended by an edge labelled l:Out.

Definition 7. (h-levels) Be an eAG G. Since G is con-
nected, ∀v ∈ V,∃P = (VP , EP) ⊆ G a root-to-leaf path so
that v ∈ VP . The h-level of v in P is the biggest subset
N ⊆ VP so that ∀v′ ∈ N, v′ =h v.
(h-levels direct inclusion) Be a path P , Nx, Ny h-levels in P .
Ny is directly included in Nx, denoted Nx ❂

h Ny , iff :
1. ∀(vx, vy) ∈ Nx ×Ny , vx >h vy and
2. ̸ ∃v ∈ V | vx >h v >h vy.
(h-levels inclusion) The h-inclusion is the transitive closure
of ❁h. It is denoted ⊂h.
(Pr and Sc) An h-level N is primary (secondary), denoted
N ∈ Pr (resp. N ∈ Sc) iff ∀N ′ ⊆h N,∀(v, v′) ∈ N × N ′,
if ∃e so that v′⌊e⌋v ⊆ G ∨ v⌊e⌋v′ ⊆ G, then“:LinkTo”
̸⊂ label(e) ⇒“:Att” ̸⊂ label(e) (resp. “:Att”⊂ label(e)).

Property 3. Be G = (V,E). We enforce that:
1. For all N h-level of G, N ∈ Pr ∪ Sc.
2. For all N ∈ Sc,∃N ′ ∈ Pr;N ′

❂
h N .

9ϵ stands for a blank, or void, annotation.

Figure 2: An eAG representing Figure 1 and a way to browse through it (arrows). Grey edges are for reading
assistance (they span over the paths defining a structured element). Speech balloons show reference values
(shades differenciate between chronometers), from a chronology extending ⟨T,≤⟩ (cf.Illustration, part 1) in
order to detail the content of Page one and a Ref (“[a]” in the text) between characters 150 and 153.

The above provides us with a definition of inclusion, on
which to found a definition of elements and attributes.

Definition 8. (Element, attribute) Be G = (V,E) an eAG.
An element (resp. attribute) is a subgraph H of G so that:
1. ∃v, v′ ∈ V, e ∈ E;H = v⌊e⌋v′ ∧ label(e) ∈ L∅

(resp. LAtt) or
2. ∃{v0...vN} ⊆ V , {e0...eN−1} ⊆ E so that :

∀i ∈ [0, N − 1], vi⌊ei⌋vi+1 ⊆ G and
∀i ∈ [1, N − 1], (v0, vN) >h

b vi and
∃N ∈ Pr (resp. Sc) ; v0, vN ∈ N and
H =

⋃

i∈[0,N−1]

vi⌊ei⌋vi+1.

This defines consecutive elements: two elements A and B
are consecutive if, say, root(B) = leaf(A). We can extend
that notion to A and B only separated by a edges labelled ϵ.
Elements can also include one another, based on the previous
definition. We go further and add the following property.

Property 4. Be A ̸= B two elements. We enforce that
(leaf(A), root(A)) >h

b root(B) ⇔ (leaf(A), root(A)) >h
b leaf(B).

It means that two elements whose roots and leaves are
either on the same h-level or on h-levels included one into
the other either are consecutive (directly or not) or include
one another. Paths connecting the root of an eAG to its
node and made only out of consecutive and inclusive ele-
ments will be referred to as “linear annotation paths”. An
eAG contains several such paths which, individually, repre-
sent a given annotation paradigm à la XML, since they can
be modelled as ordered trees of elements. However, in an
eAG, some elements can very well appear simultaneously on
several such paths (c.f. Illustration, part 2). This means el-
ement hierarchies share items: an eAG can be modelled by
no less than a multitree. Eventually, because edges whose
label contains “:LinkTo” are unrestricted, they can connect
any nodes together, which may result in a cyclic graph.

Illustration, part 2. (Linear annotation paths) Figure 2
shows an eAG representing the document illustrated in Fig-
ure 1. It contains three competing linear annotation paths.

The arrowed path provides a layout-oriented Page descrip-
tion, fragmented into Modules, Lines, Figures and Images.
Another identifies a Ref inside the text of the Paragraph.
The last path splits Paragraphs into Lines. Lines are shared
elements with the first path; they are also the only shared
elements. For instance, the Paragraph does not include the
Figure element, since there is no h-inclusion between the h-
levels where the roots and leaves of the two elements appear.
(Structured element, Link) The Ref element is made out of
two edges labelled Ref:In and Ref:Out. It annotates the
string “[a]” from inside the text. Graph-wise, it is a struc-
tured element, since it contains more than one edge. It is
also void, as there is but a node between its two constituting
edges; still, this node points towards the second Image on an-
other annotation path by means of an edge suffixed:LinkTo.

Property 5. (Covering chronologies) We enforce that:
1. Be an h-level N . ∃⟨T,≤⟩ a chronology, ∃!c ∈ C so that
∀v ∈ N, ref(v) ∈ T ∩ Tc. This defines a sub-chronology
⟨TN ,≤N⟩ so that TN = T ∩ Tc and ≤N=≤c.
2. Be (N,N ′) ∈ Pr2. N ′

❁ N ⇒ ⟨TN′ ,≤N′⟩ ⊆ ⟨TN ,≤N⟩.
3. Be v⌊e⌋v′ so that ∃(N,N ′) ∈ Pr2; (v, v′) ∈ N ×N ′ and
:LinkTo ̸⊂ label(e). Point 1. or 2. (depending on N = N ′

or N ′ ̸= N) ensure that there is a chronology ⟨T,≤⟩ so that
ref(v), ref(v′) ∈ T . Then ref(v) ≤ ref(v′).

Linear annotation only makes sense provided there is a
dimension along which the elements flow: concretely, Prop-
erty 5 means that the structural order in which elements are
positioned along a linear annotation path must not contra-
dict the order of the references of their nodes. As a con-
sequence, there is always a covering chronology for a linear
annotation path. However, it is possible to annotate a re-
source without, or against, any chronological order, thanks
to the unconstrained edges whose label contains :LinkTo.

Definition 9. (Accidental nesting) Be an eAG G and A,
B two elements. B is accidentally nested in A iff there are:
- two linear annotation paths P1 = (V1, E1), P2 = (V2, E2),
their covering chronologies ⟨T1,≤1⟩, ⟨T2,≤2⟩ and NA ⊆
V1, NB ⊆ V2 the h-levels (in P1 and P2 resp.) so that

root(A), leaf(A) ∈ NA and root(B), leaf(B) ∈ NB , and
- c ∈ C,∃N,N ′;N ⊆h NA, N

′ ⊇h NB verifying N ⊆ V1,
N ′ ⊆ V2, and ∃(vχ, vφ) ∈ N2, (vx, vy) ∈ N ′2, so that:
1. ref(vχ), ref(vφ), ref(vx), ref(vy) ∈ Tc

2. ref(root(A)) ≤1 ref(vχ), ref(vφ) ≤1 ref(leaf(A))
3. ref(vx) ≤2 ref(root(B)), ref(leaf(B)) ≤2 ref(vy)
4. ref(vχ) <c ref(vx) <c ref(vy) <c ref(vφ).
(Overlap) A and B overlap (with A first) iff the above paths,
h-levels, chronometer and nodes exist and verify:
1. ref(vχ), ref(vφ), ref(vx), ref(vy) ∈ Tc

2. ref(root(A)) ≤1 ref(vχ) ≤c ref(vx) ≤2 ref(root(B))
3. ref(leaf(A)) ≤1 ref(vφ) ≤c ref(vy) ≤2 ref(leaf(B)).

Example 3. In Figure 2, since the elements Figure and
Paragraph are not on the same linear annotation paths, they
cannot include one another. However, Figure is accidentally
nesting inside the Paragraph.

Illustration, part 3. (Linear annotation paths) One can
check that it is possible to extend the composite chronol-
ogy ⟨T,≤⟩ defined in Illustration, part 1 to cover the whole
arrowed path in Figure 2, so that for any node v preceding
a node v′ along this path, ref(v) ≤ ref(v′).
(Inter-chronometers comparisons) Cross-chronometer assess-
ments can be made on an eAG. First example, because in
⟨T,≤⟩, x2 < 130, we know that from a (top-down) lay-
out point of view, the second image precedes the last Line.
(Cross-linear paths comparison) Cross-linear annotation path
assessments can also be made, thanks to the notions of acci-
dental nesting and overlap. E.g. Ref is accidentally nested
in the last Module, because this Module h-includes the Line
delimited by characters 130 and 154, while Ref ranges from
character 150 to 153. Then, it is possible to assess that the
Ref is located further than the last Image, from a descend-
ing layout point of view. The edge labelled Refer:LinkTo

(which is a link) does not respect the inferred reference or-
der, which is not contradictory with the eAG model.

4.2 Schema model
To sum up, an eAG is a connected, directed and labelled

graph whose nodes bear references values. Informally, an
eAG is composed of several linear annotation paths shar-
ing items and connected together by :LinkTo edges. We
have defined linear annotation paths by some specific prop-
erties. Those properties, together with the graph model,
define what a well-formed eAG is.

Now we define a schema model for eAG. Schemas are a
means to define the allowed elements/attributes and their
mutual relationships (consecutiveness, inclusion, existence
of :LinkTo connexions) for the matching eAGs. Since el-
ements, attributes and relationships have a homogeneous
edge-based representation, eAG schemas needs be no more
than a graph description formalism, which simulation is [5].

Definition 10. (SeAG) An eAG schema, denoted SeAG, is
a directed, connected, labelled graph with one root and one
leaf only. Its labels fall into Definition 5. It verifies Proper-
ties 1, 2, 3 and 4. Moreover, two nodes are not allowed to
be connected by two edges with the same label.

Definition 11. (Node types) In order to describe the rela-
tionship between an eAG and a SeAG, we equip both graphs’
nodes with two more values: a type value, and an identifier
(see Definition 14). Within a SeAG, for two nodes v, v′, we

Figure 3: A schema for eAG. It validates the graph
from Figure 2, restricted to the arrowed path.

enforce that type(v) = type(v′) ⇔ v = v′. Additionally, a
type is associated to exactly one chronometer c ∈ C.

Definition 12. (Simulation) Consider A = (VA, EA) and
B = (VB, EB) two rooted, directed labelled graphs. A sim-
ulation of B by A is a relation R ∈ VB × VA so that:
1. (root(B), root(A)) ∈ R and
2. (vB, vA) ∈ R ⇒ ∀vB⌊eB⌋v′B ⊆ B,∃(eA, vA) ∈ EA×VA so
that vA⌊eA⌋v

′
A ⊆ A ∧ label(eA) = label(eB) ∧ (v′B, v

′
A) ∈ R.

(Node-typed, rooted simulation) A node-typed simulation R
verifies the above, plus ∀(vB , vA) ∈ R, type(vA) = type(vB).

Example 4. Be A and B two rooted, connected graphs
with one leaf. A simulates B implies that for all root-to-leaf
path in B, there is a rooted path in A so that the sequences
of labels along the two paths are equal. Conversely, given
a graph A, building a graph B simulated by A restricts the
possible label sequences along paths in B:
Consider the graph A below, where the values in the nodes
are their types. It is the Ott automaton [16] representing
the regular expression r =X:In(a|b)

∗
X:Out.The graph B,

whose label sequences along the root to node paths are words
from the language of r, is simulated by A.

The simulation is easy to decipher here : it is made out of
the couples (vB , vA) so that type(vB) = type(vA).

Definition 13. Be S an SeAG and G an eAG. S validates
G iff there is a rooted, node-typed simulation of G by S and
type(leaf(G)) = type(leaf(S)). In this case, G is called an
instance of S.

Illustration, part 4. The Figure 3 shows a SeAG. Read as
an automaton, it says that:
1. Within a Doc element are one or more Page elements.
The backwards ϵ edge from node typed 12 to node typed 2
ensures multiplicity.
2. Within a Page are one or more Modules.
3. Modules are defined alternatively as containing one or
more Lines (path through nodes typed 3-4-5-11), or contain-
ing one Figure (path through nodes typed 3-6-7-8-9-10-11).
Alternatives are represented by parallel paths.
4. Within a Figure are one or two Images. Optionality
along a path is represented by the alternative between an
element or an ϵ edge.

Discussion 1. (SeAG expressive power) As illustrated be-
fore, based on Ott’s linear representation of regular expres-
sions [16], a wide range of composite element contents can
be expressed in an eAG: the | operator is represented by two
parallel subpaths in the SeAG and the Kleene star operator
by a backwards oriented ϵ edge; any combination is possible.

Importantly, the above automaton interpretation of SeAG
only holds because of the well-formedness constraints for
eAGs. For instance, the interpretation of the cyclic SeAG A
in Example 4 as an Ott automaton, i.e. as a means to define
an infinite set of acyclic paths, would not be correct without
Property 5. Indeed, there is at least one cyclic graph that A
simulates: A itself, but there is no way a graph structurally
identical to A shall be an eAG. Consider A equipped with
reference values on its nodes. Property 5, states that edges
not suffixed :LinkTo go from nodes with a lower reference
value to nodes with a higher one. Since the cyclic subgraph
made out of the edges between the nodes typed 2 and 3
contains no :LinkTo, then whatever the reference values of
its nodes, it cannot be part of an eAG. Conversely, the cycle
in A will only be instantiated by acyclic paths (cf. graph B,
Example 4) in the eAGs validated by A.

More generally, eAG data model and simulation-based val-
idation make sense together. The following examples illus-
trate how the definition rules for eAG give sense to the SeAG
formalism. First, an SeAG can express that two h-levels
share elements: see graph A below. This SeAG does simu-
late the faulty graph B, where the inclusion semantics is lost
(e.g. X:Out is missing), but since for that reason, regardless
of its nodes references, B is not well-formed (see Property
2), it is not to be considered for validation. However, A val-
idates the well-formed eAG C, which implements properly
multitree annotation with shared items between h-levels.

Thanks to the same Property 2 in the eAG data model, an
SeAG can contain recursive elements as well :

Discussion 2. (Caveats) [5, 1] point out several limita-
tions to simulation-based validation. First, for a given in-
stance graph, several schemas are eligible, since simulation is
transitive. This matters greatly when schemas are inferred
from the data, but does not when they are predefined.
Second, and more importantly, simulation-based validation
as defined by [5] does not enforce the presence of a la-
bel. This is true for simulation between two general graphs.
Still, this caveat can be bypassed by specifying an appropri-
ate data model. Consider the SeAG A and the graphs B1

and B2. Even though A simulates both, it validates none:
B1 is not well-formed, and type(leaf(B2)) ̸= type(leaf(A)),
which contradicts the validation definition.

Hence well-formedness and validation rules somehow enforce

the presence of labels that simulation does not.
Last, simulation cannot prevent a node from having several
outgoing edges. Said differently, as illustrated in Example 4,
even when an SeAG contains one single (cyclic) path, there
is no way to prevent the annotator to annotate the same
content with several layers all instantiating the same path.
Of course, this feature has positive aspects (e.g. self over-
lap is natively supported). But it means that a hierarchical
SeAG will validate multitrees, not trees only.

Still, there is a connexion between simulation and grammar-
based validations. An XML document is, syntactically speak-
ing, a tree; a (RelaxNG) schema is a Tree automaton [15],
which validates the tree for which there is an “interpreta-
tion”, as defined in Figure 5. We know there is a way to
translate trees into eAGs. For instance, the eAG represent-
ing the tree X from Figure 5 is the arrowed path in Figure 2.
There is also a way to derive a SeAG from a Tree automa-
ton. Consider an automaton TA = (S,N, T,R), for instance
the one from Figure 5. In TA, T is the set of terminals. N
is the set of non-terminals, among which are start symbols
(S). The elements of R are called production rules. A rule
associates a non terminal to a terminal, representing a pos-
sible labelled node of a tree, and a regular expressions over
N against which the sons of the node shall match.
For our derivation of an SeAG from a TA, we enforce that
if there is a rule r = x → X(reg) ∈ R so that reg can be
expressed as reg1|reg2, with no common prefix and suffix
between the words in the languages of reg1 and reg2, then r
must be split into two rules r1 = x → X(reg1) and r2 = x →
X(reg2). For instance, module → Module(line+|figure)
shall be split into two rules module → Module(line+) and
module → Module(figure). Provided the rules are written
this way, a SeAG STA derives from TA10 as follows:
There is a partition of R into sets of rules sharing the same
left-hand side. For any n ∈ N , let us call Rn one such sub-
set of R. Then, every n ∈ N may define what we call a
unique Box, denoted nBox. The nBox is a rooted graph
that reflects the content of the set of rules in Rn. In the
nBox, each ri = n → Ti(rei) ∈ Rn is represented by a root-
to-node path. If rei = ∅, then the path is a single edge
labelled Ti. Else, since rei is a regular expression over N ,
it can be represented by the Ott automaton made out of
the Boxes corresponding to rei, escorted by two edges la-
belled Ti:In and Ti:Out. Figure 4 shows the nBoxes for
the automaton in Figure 5. By replacing iteratively, in a
bottom-up approach, the Boxes contained one in the others,
we obtain a labelled graph which is STA. One can check that
this substitution, in the case of Figure 4, yields the SeAG
shown on Figure 3.
Here comes the interesting point: this example illustrates
that, given a tree automaton TA and a tree X so that there
is an interpretation of X against TA, the SeAG derived from
TA simulates the eAG representation of X11.

The above provides a sketch of proof for the following con-
nexion between interpretation and simulation for validation:

Property 6. Be a tree X and a tree automaton TA. Be
GX the eAG representation of X; be STA the SeAG derived
from TA. Then, if there is an interpretation of X by TA,
then STA simulates GX .

10The following sketch leaves recursive element definition out.
11We obliterate the question of node types here. We only
compare the bare simulation and interpretation relations.

Figure 4: For all n ∈ N as defined in Figure 5, each
nBox representation (middle) and Rn ⊂ R (right).

4.3 Representation
So far we have introduced eAG, a cyclic graph data model

for multiple annotation of composite resources, along with
a schema model, SeAG. Here, we consider the case where
a schema is needed to proceed to annotation. We define
a matrix representation for SeAG and eAG so that, given
the representation of a schema, only valid instances can be
represented. This is “validation by construction”.

Definition 14. (Identifier sets) Be a graph G = (V,E).
There are two countable ordered sets IG and JG and two
bijective functions id : V −→ IG and id : E −→ JG identi-
fying the nodes and edges of G. The ith element of the set
IG, for instance, is denoted [IG]i.

Definition 15. Be a graphG = (V,E), IG and JG two sets
of identifiers. Provided G contains no connected subgraph
limited to a node and no loop, G can be represented by its
incidence matrix [G]IG ,JG so that, ∀(i, j) ∈ IG × JG:
[G]IG ,JG

i,j = 1 iff ∃v⌊e⌋v′ ⊆ G; id(v) = i ∧ id(e) = j
= −1 iff ∃v⌊e⌋v′ ⊆ G; id(v′) = i ∧ id(e) = j
= 0 else.

Property 7. Be a SeAG S = (VS , ES). Ordering the sets
{type(v); v ∈ VS}, {(type(v), label(e), type(v

′)); v⌊e⌋v′ ⊆ S},
provides two special node and edge identifier sets T ,X .

Proof. In a SeAG, no two nodes have the same type
(Def. 11) or are connected by two edges with the same label
(Def. 10). Any ordering of the sets is fine.

Discussion 3. Consider the following SeAG :

The values vi are possible identifiers for the nearby nodes,
and ej for edges, so that IS = [v1, v2, v3, v4], for instance.
Then, Property 7 means that it is possible to represent
the incidence matrix of an SeAG S by indexing lines and
columns either on any IS × JS or on T × X in particular.
For instance, when indexed over T × X :

[S]T ,X =

1X:In2 2a3 2b3 3ϵ2 3X:Out4

1
2
3
4

⎡

⎢

⎣

1 0 0 0 0
−1 1 1 −1 0
0 −1 −1 1 1
0 0 0 0 −1

⎤

⎥

⎦

It is also possible to express a subgraph of S in an inci-
dence matrix indexed over the full identifier sets. For in-
stance, below is the incidence matrix over IS and JS of
H = {v⌊e⌋v′ ⊆ S; (type(v), label(e), type(v′)) = (2, b, 3)},
subgraph of S :

[H]IS,JS =

e1 e2 e3 e4 e5
v1
v2
v3
v4

⎡

⎢

⎣

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0

⎤

⎥

⎦

Definition 16. Given a n×m matrix [M] of integers, the
positive restriction of [M] is the n×m matrix [M+] so that
∀i, j, [M+]i,j = [M]i,j iff [M]i,j > 0, else [M+]i,j = 0. The
definition of [M−] the negative restriction of [M] is natural.

Discussion 4. Consider two graphs G and H , H ⊆ G and
the incidence matrix [H]IG,JG . Then the positive restriction
of [H]IG,JG , read column by column, lists the identifiers of
the nodes that are the summits of the edges of H whose
identifier matches the one of the column. Conversely, the
negative restriction of [H]IS ,JS defined in Discussion 3 is :

[H−]IS,JS =

e1 e2 e3 e4 e5
v1
v2
v3
v4

⎡

⎢

⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0

⎤

⎥

⎦

Note that the sum of the positive and negative restriction
of any incidence matrix gives the incidence matrix.

Definition 17. (Template) Be S a SeAG, G a graph that
can be represented by its incidence matrix, and IG,JG iden-
tifier sets for G. Consider the block-matrix obtained by re-
placing each value si,j of [S]T ,X by a matrix [Mi,j], so that:
- si,j = 0 ⇒ [Mi,j] = [∅]IG ,JG , where ∅ is the empty graph,
whose incidence matrix is always zero ;
- si,j = 1 ⇒ [Mi,j] = [A], where [A] is the positive restric-
tion of the incidence matrix over IG,JG of Hj ⊆ G , with
Hj = {v⌊e⌋v′ ⊆ G; (type(v), label(e), type(v′)) = [X]j};
- si,j = −1 ⇒ [Mi,j] = [B], where [B] is the negative re-
striction of the incidence matrix over IG,JG of Hj .
This block-matrix is called the expression of G on the tem-
plate of S, denoted [G/Temp.S].

Example 5. Consider the SeAG S defined in Discussion 3.
The expression of S on its own template is:

[S/Temp.S] =

1X:In2 2a3 2b3 3ϵ2 3X:Out4

1
2
3
4

⎡

⎢

⎣

[A1] 0 0 0 0
[B1] [A2] [A3] [B4] 0
0 [B2] [B3] [A4] [A5]
0 0 0 0 [B5]

⎤

⎥

⎦

with, for instance, [A3] = [H+]IS ,JS and [B3] = [H−]IS ,JS

as defined in Discussion 4.

Definition 18. Be S an SeAG and G, IG,JG a graph con-
taining no subgraph limited to a node and no loop, along
with two sets of identifiers. G is said to be fully expressible
on the template of S, denoted G ▹ [Temp.S], iff the sum of
the inner matrices of [G/Temp.S] is equal to [G]IG ,JG the
incidence matrix of G, indexed over the same sets as the
inner matrices of [G/Temp.S].

Property 8. Be S an SeAG. Then S is fully expressible on
its own template.

Proof. ∀l ∈ [0; |X |[, the lth column of [S/Temp.S] con-
tains two matrices [Al] and [Bl]. Since they are respectively

the positive and negative restrictions of the incidence ma-
trix of a subgraph Hl ⊆ S, which is the union of all the
subgraphs v⌊e⌋v′ characterized by the same triple [X]l of
types and label, [Al] + [Bl] = [Hl]

IS ,JS . Since X is the set
of possible triples for S,

∑

0≤l<|X|

[Hl]
IS ,JS = [S]IS ,JS .

It is worth mentioning that only schemas define a tem-
plate. In particular, given an instance G and any identifier
sets I,J , since there may not be bijections between those
sets and T ,X , the notion of template ofG is undefined. Still,
it is possible to try to express G, not over its own template,
but over the template of a given schema S.
Let us denote this representation [G/Temp.S]. The schema
defines the template, that is, the outer matrix of [G/Temp.S],
indexed over T ×X : it restricts the types, the labels between
two given types and the paths along which those labels may
occur. Be then [X]l ∈ X . Just like above, we can define
Hl = {v⌊e⌋v′ ⊆ G; (type(v), label(e), type(v′)) = [X]l}, so
that Hl ⊆ G. Then the inner matrices of [G/Temp.S] are
defined just the same way as those in [S/Temp.S], that is: in
the lth outer column, on the right outer lines, as the positive
and negative restrictions of [Hl]

I,J (see Definition 17).
Interestingly, this approach can be taken for any graph G

and any schema S. If the graph contains no edge conforming
the schema, then [G/Temp.S] is null. On the contrary, an
important result is that provided G is an instance of S, then
G is fully expressible on [Temp.S]. We can even go further:

Property 9. Be a SeAG S and an eAG G. Then S vali-
dates G iff G▹ [Temp.S] and type(leaf(G)) = type(leaf(S))
and type(root(G)) = type(root(S)).

Proof. ⇒ : S validates G, then the types of the two
graphs’ leafs are equal, by definition of validation. Idem for
the roots. The fact that validation implies G▹ [Temp.S] can
be proven just like Property 8, with one more argument. The
fact that the sum of the two inner matrices characterised by
the same L ∈ X yields the incidence matrix of the union of
all the subgraphs v⌊e⌋v′ ⊆ G characterised by L holds. Yet,
it has to be proven that there is no subgraph v⌊e⌋v′ ⊆ G so
that (type(v), label(e), type(v′)) ̸∈ X . Since G is rooted and
connected, one can check that the presence of such a sub-
graph shall contradict the existence of a rooted simulation.
⇐ : Be G = (V,E), S = (VS, ES). G▹[Temp.S] implies that
∀v⌊e⌋v′ ⊆ G, ∃L ∈ X so that (type(v), label(e), type(v′)) =
L, which means ∃!vS⌊eS⌋v

′
S ⊆ S so that type(vS) = type(v),

type(v′S) = type(v′) and label(eS) = label(e).
This defines two functions δ : V → VS and δE : E → ES

so that ∀v⌊e⌋v′ ⊆ G, ∃!(δ(v), δE(e), δ(v
′)) ∈ VS × ES × VS

so that ∀x, type(δ(x)) = type(x), ∀y, label(δE(y)) = label(y)
and δ(v)⌊δE(e)⌋δ(v

′) ⊆ S.
Additionally, the fact that type(root(G)) = type(root(S))
implies δ(root(G)) = root(S). Then D = {(v, δ(v)); v ∈ V }
is a rooted, node-typed simulation of G by S.

Illustration, part 5. Consider the eAG B from Example 4.
Let us equip its nodes and edges with identifiers, as shown
below.

The representation of B in [Temp.S] is:

[B/Temp.S] =

1X:In2 2a3 2b3 3ϵ2 3X:Out4

1
2
3
4

⎡

⎢

⎣

[A1] 0 0 0 0
[B1] [A2] [A3] [B4] 0
0 [B2] [B3] [A4] [A5]
0 0 0 0 [B5]

⎤

⎥

⎦

with [B3] the negative restriction of [H]IB ,JB , for instance,
forH = {v⌊e⌋v′ ⊆ B; (type(v), label(e), type(v′)) = (2, b, 3)}:

[B3] =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
v1
v2
v3
v4
v5
v6
v7
v8
v9

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Now compare [B/Temp.S] with [S/Temp.S] as detailed in
Example 5. The two matrices share the same outer matrix,
which is descriptive of S, they only differ by the values of the
inner matrices (e.g. see the value of [B3] for S in Example 5).
Based on Property 9, we can finally conclude:

Given a schema S, the eAGs it validates are the well-
formed eAGs model that can be fully expressed in [Temp.S],
and whose root and leaf types respect those of S. This
means that an instance of S is an eAG that can be described
by the set of matrix values that fill [Temp.S]. From a man-
ufacturing point of view, if the annotator of a resource is
given means (through an ergonomic HCI) to define the ma-
trix values corresponding to [Temp.S], in a way that ensures
well-formedness, then, by construction, the resulting graph
will be valid against the schema. This meets the goal of
providing on-the-fly validation for M-S data.

5. CONCLUSION
In this paper, we introduce eAG, an extension of Anno-

tation graphs, along with a novel schema model based upon
the notion of simulation. A dedicated representation for
eAGs and schemas enables to proceed to validation “by con-
struction”: provided a schema, only valid eAGs can be ex-
pressed, which bypasses the algorithmic cost of traditional
approaches for validation of graph-structured data.

Still, the eAG data model is not restricted to this use
case, and simulation-based validation can be adapted to the
situations where any eAG G = (V,E) is confronted to any
SeAG S = (VS , ES). First case, G was made according
to a schema S′ = (VS′ , ES′), and the question is whether
it conforms to S or not. By transitivity of simulation, S
validates G iff S simulates S′ so that (leaf(S′), leaf(S))
are in the simulation (indicating, modulo retyping the nodes
of S, a node-typed simulation of S′ by S). This checks in
O(|VS′ ∪ VS| · |ES′ ∪ ES|) [19]. Second case, G was not
made according to any schema. In this case, node types are
irrelevant. An adaptation of SeAG validation is: S validates
G iff there is a (general) simulation D ⊆ V × VS so that
∀v ∈ V , ∃!vS ∈ VS so that (v, vS) ∈ D (the uniqueness of vS
for each v defines a typing of the nodes of G according to
S). This checks in O(|V ∪VS| · |E ∪ES|). In both cases, this
is a reasonable cost for a cyclic graph-based data model.

6. ACKNOWLEDGMENTS
This work is supported by the ARC5 program of the Rhône-

Alpes region, France.

Figure 5: RelaxNG tree automaton-based XML validation mechanism.

7. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web: from relations to semistructured data and XML.
Morgan Kaufmann, 2000.

[2] S. Bird and M. Liberman. A formal framework for
linguistic annotation. Speech communication,
33(1):23–60, 2001.

[3] E. Bruno and E. Murisasco. Describing and querying
hierarchical xml structures defined over the same
textual data. In Proceedings of the 2006 ACM
symposium on Document engineering, pages 147–154.
ACM, 2006.

[4] E. Bruno and E. Murisasco. An xml environment for
multistructured textual documents. In Digital
Information Management, 2007. ICDIM’07. 2nd
International Conference on, volume 1, pages 230–235.
IEEE, 2007.

[5] P. Buneman, S. Davidson, M. Fernandez, and
D. Suciu. Adding structure to unstructured data. In
Database Theory -ICDT’97, pages 336–350. Springer,
1997.

[6] L. Burnard and S. Bauman. TEI P5: Guidelines for
electronic text encoding and interchange. TEI
Consortium, 2008.

[7] H. A. Cayless. Rebooting tei pointers. Journal of the
Text Encoding Initiative, (6), 2013.

[8] A. Di Iorio, S. Peroni, and F. Vitali. Using semantic
web technologies for analysis and validation of
structural markup. International Journal of Web
Engineering and Technology, 6(4):375–398, 2011.

[9] C. F. Goldfarb and Y. Rubinsky. The SGML
handbook. Oxford University Press, 1990.

[10] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. 1997.

[11] M. Hilbert, A. Witt, and O. Schonefeld. Making
concur work. In In Extreme Markup Languages, 2005.

[12] C. Huitfeldt and C. Sperberg-McQueen. Texmecs: An
experimental markup meta-language for complex
documents. URL http://www. hit. uib.
no/claus/mlcd/papers/texmecs. html, 2001.

[13] H. Jagadish, L. V. Lakshmanan, M. Scannapieco,
D. Srivastava, and N. Wiwatwattana. Colorful xml:
one hierarchy isn’t enough. In Proceedings of the 2004
ACM SIGMOD international conference on
Management of data, pages 251–262. ACM, 2004.

[14] D. Lee, M. Mani, and M. Murata. Reasoning about

xml schema languages using formal language theory.
Technical report, Citeseer, 2000.

[15] M. Murata, D. Lee, M. Mani, and K. Kawaguchi.
Taxonomy of xml schema languages using formal
language theory. ACM Transactions on Internet
Technology (TOIT), 5(4):660–704, 2005.

[16] G. Ott and N. H. Feinstein. Design of sequential
machines from their regular expressions. Journal of
the ACM (JACM), 8(4):585–600, 1961.

[17] S. Peroni and F. Vitali. Annotations with earmark for
arbitrary, overlapping and out-of order markup. In
Proceedings of the 9th ACM symposium on Document
engineering, pages 171–180. ACM, 2009.

[18] P.-É. Portier, N. Chatti, S. Calabretto,
E. Egyed-Zsigmond, and J.-M. Pinon. Modeling,
encoding and querying multi-structured documents.
Information Processing & Management,
48(5):931–955, 2012.

[19] F. Ranzato and F. Tapparo. An efficient simulation
algorithm based on abstract interpretation.
Information and Computation, 208(1):1–22, 2010.

[20] D. Reynolds, C. Thompson, J. Mukerji, and
D. Coleman. An assessment of rdf/owl modelling.
Digital Media Systems Laboratory, HP Laboratories
Bristol, 28, 2005.

[21] C. M. Sperberg-McQueen. Rabbit/duck grammars: a
validation method for overlapping structures. In
Extreme Markup Languages, 2006.

[22] C. M. Sperberg-McQueen and C. Huitfeldt. Goddag:
A data structure for overlapping hierarchies. In Digital
documents: Systems and principles, pages 139–160.
Springer, 2000.

[23] M. Stührenberg and C. Wurm. Refining the taxonomy
of xml schema languages. a new approach for
categorizing xml schema languages in terms of
processing complexity. In Proceedings of Balisage: The
Markup Conference, volume 5, 2010.

[24] D. Suciu. Semistructured data and xml. In
Information organization and databases, pages 9–30.
Springer, 2000.

[25] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness.
Integrity constraints in owl. In AAAI, 2010.

[26] J. Tennison. Creole: Validating overlapping markup.
In Proceedings of XTech, 2007.

[27] J. Tennison and W. Piez. The layered markup and
annotation language (lmnl). In Extreme Markup
Languages, 2002.

